![复变函数第四版(第三章)_第1页](http://file4.renrendoc.com/view2/M00/13/1A/wKhkFmY4iuCAL1g2AADdIdKDNCk558.jpg)
![复变函数第四版(第三章)_第2页](http://file4.renrendoc.com/view2/M00/13/1A/wKhkFmY4iuCAL1g2AADdIdKDNCk5582.jpg)
![复变函数第四版(第三章)_第3页](http://file4.renrendoc.com/view2/M00/13/1A/wKhkFmY4iuCAL1g2AADdIdKDNCk5583.jpg)
![复变函数第四版(第三章)_第4页](http://file4.renrendoc.com/view2/M00/13/1A/wKhkFmY4iuCAL1g2AADdIdKDNCk5584.jpg)
![复变函数第四版(第三章)_第5页](http://file4.renrendoc.com/view2/M00/13/1A/wKhkFmY4iuCAL1g2AADdIdKDNCk5585.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Home}目录§3.2柯西-古萨基本定理§3.3柯西积分公式§3.4解析函数的高阶导数§3.1复积分的概念第3章复变函数的积分
2021/5/91§3.1复积分的概念1复变函数的积分定义
定义:设函数w=f(z)
定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为:2021/5/922021/5/932复积分存在的一个充分条件:2021/5/94复积分的计算方法:一个复积分的实质是两个实二型线积分2021/5/951线性性:
3复积分的性质:2021/5/96例题1
(2)C:左半平面以原点为中心逆时针方向的单位半圆周。解(1)
2021/5/97(2)参数方程为可见积分与路径有关。2021/5/98例题2
解:
例如2021/5/99例题3
解:可见,积分仅与起点和终点有关,而与路径无关。2021/5/910例题4
证明:
2021/5/911定理1(Cauchy-Goursat)
如果函数f(z)在单连通域D内处处解析,则它在D内任何一条封闭曲线C的积分为零:
注1:定理中的曲线C可以不是简单曲线.
此定理成立的条件之一是曲线C要属于区域D。§3.2柯西-古萨基本定理2021/5/912
注2:如果曲线C是D的边界,函数f(z)在D内与C上解析,即在闭区域D+C上解析,甚至f(z)在D内解析,在闭区域D+C上连续,则f(z)在边界上的积分仍然有推论:与路径无关仅与起点和终点有关。如果函数f(z)在单连通域D内处处解析,C属于D,2021/5/913柯西-古萨基本定理还可推广到多连通域:
假设C及C1为任意两条简单闭曲线,C1在C内部,设函数f(z)在C及C1所围的二连域D内解析,在边界上连续,则定理2(复合闭路定理)2021/5/914证明:取
这说明解析函数沿简单闭曲线积分不因闭曲线在区域内作连续变形而改变它的值。------闭路变形原理2021/5/915推论(复合闭路定理):(互不包含且互不相交),
所围成的多连通区域,
2021/5/916例题1C如图所示:解:
存在f(z)的解析单连通域D包含曲线C,故积分与路径无关,仅与起点和终点有关。或现设z=it,t从-3变化到1,2021/5/917例题2求C为包含0与1的任何正向简单闭曲线。解:
现分别以z=0,1为圆心,在C内作两个互不包含也互不相交的正向圆周C1与C2.2021/5/9182021/5/919练习:计算积分解:现分别以z=1,2为圆心,在C内作两个互不包含也互不相交的正向圆周C1与C2.由复合闭路定理知:2021/5/920§3.3柯西积分公式若
f(z)在D内解析,则分析:在上节的基础上,我们来进一步探讨如下积分:2021/5/921
定理(柯西积分公式)
如果f(z)在区域D内处处解析,C为D内的任何一条正向简单闭曲线,它的内部完全含于D,z0为C内的任一点,则---解析函数可用复积分表示。2021/5/922
[证]由于f(z)在z0连续,任给e>0,存在d(e)>0,当
|z-z0|<d
时,|f(z)-f(z0)|<e.设以z0为中心,R为半径的圆周K:|z-z0|=R全部在C的内部,且R<d.DCKzz0R2021/5/923从而有:2021/5/924例题1计算解:
因为f(z)=cosz在复平面上解析,又-i在内,所以
2021/5/925例题2计算解:方法1
因为f(z)=sinz在复平面上解析,又-1,1均在内,所以
2021/5/926解:方法2
利用复合闭路定理,分别以-1,1为圆心,作两个互不相交互不包含的圆周C1,C22021/5/927练习计算解:
因为被积函数在内只有一个奇点,所以
2021/5/928例题3
解:
2021/5/9292021/5/930
一个解析函数不仅有一阶导数,而且有各高阶导数,它的值也可用函数在边界上的值通过积分来表示.这一点和实变函数完全不同.一个实变函数在某一区间上可导,它的导数在这区间上是否连续也不一定,更不要说它有高阶导数存在了.§3.4解析函数的高阶导数2021/5/931定理
解析函数f(z)的导数仍为解析函数,它的n阶导数为:
其中C为在函数f(z)的解析区域D内围绕z0的任何一条正向简单曲线,而且它的内部全含于D.2021/5/932[证]设z0为D内任意一点,先证n=1的情形,即
因此就是要证2021/5/933按柯西积分公式有2021/5/934因此现要证当Dz0时I0,而2021/5/935f(z)在C上连续,则有界,设界为M,则在C上有|f(z)|
M.d为z0到C上各点的最短距离,则取|Dz|适当地小使其满足|Dz|<d/2,因此Dz0dCL是C的长度2021/5/936这就证得了当Dz0时,I0.即:再利用同样的方法去求极限:依此类推,用数学归纳法可以证明:2021/5/937高阶导数公式的作用,不在于通过积分来求导,而在于通过求导来求积分.2021/5/938例1求下列积分的值,其中C为正向圆周:|z|=r>1.[解]1)函数在C内的z=1处不解析,但cospz在C内却是处处解析的.2021/5/9392021/5/940练习:求下列积分的值,其中C为正向圆周:|z|=2.解:
因为z=1在
|z|=2包围的区域D内,又f(z)=5z2-3z+2在复平面上解析.2021/5/941练习:求下列积分的值,其中C为正向圆周:|z|=3/2.解:由于在
|z|=3/2内有两个奇点z=0,z=-1,分别分别以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动合同范本(15篇)
- 2025年拉萨货运从业资格证考试试卷题库
- 2025年阿克苏货运从业资格仿真考题
- 2025年博尔塔拉道路货运从业资格证模拟考试官方题下载
- 2025年淮安道路运输从业资格证考哪些项目
- 2025年博尔塔拉下载b2货运从业资格证模拟考试考试
- 2025年合肥运输从业资格证考试技巧
- 2025年衡水货运从业资格证继续再教育考试答案
- 监测服务采购合同
- 电力服务创新合同(2篇)
- 2024-2030年中国豆腐市场发展趋势展望与投资策略分析报告
- 电力线路维护巡查服务合同
- 营销策划 -嘉华鲜花饼「正宗」战略重塑
- 《肺癌靶向治疗进展》课件
- 二年级上册语文期末考试成绩分析和改进措施
- 胸腰椎骨折中医护理
- 解剖台市场发展预测和趋势分析
- DB14∕T 92-2010 M5、M15车用甲醇汽油
- 2024年医师定期考核临床类人文医学知识考试题库及答案(共280题)
- 幼儿园招生工作技巧培训
- 科技公司绩效薪酬管理制度
评论
0/150
提交评论