2024届安徽省濉溪县联考中考数学最后冲刺模拟试卷含解析_第1页
2024届安徽省濉溪县联考中考数学最后冲刺模拟试卷含解析_第2页
2024届安徽省濉溪县联考中考数学最后冲刺模拟试卷含解析_第3页
2024届安徽省濉溪县联考中考数学最后冲刺模拟试卷含解析_第4页
2024届安徽省濉溪县联考中考数学最后冲刺模拟试卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省濉溪县联考中考数学最后冲刺模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A. B. C.1 D.2.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.3cm B.4cm C.5cm D.6cm3.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2π B.4π C.5π D.6π4.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE5.下列运算正确的是()A.a2+a3=a5 B.(a3)2÷a6=1 C.a2•a3=a6 D.(2+3)2=56.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A. B. C. D.7.计算(—2)2-3的值是()A、1B、2C、—1D、—28.已知x+=3,则x2+=()A.7 B.9 C.11 D.89.如图所示的几何体,它的左视图与俯视图都正确的是()A. B. C. D.10.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国 B.厉 C.害 D.了11.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米 C.30tanα米 D.30cosα米12.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是()A.120° B.135° C.150° D.165°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.观察下列各等式:……根据以上规律可知第11行左起第一个数是__.14.在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F,DE=2,则EF:BE=________。15.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.16.若不等式组的解集是﹣1<x≤1,则a=_____,b=_____.17.分解因式:x2y﹣y=_____.18.如果a2﹣a﹣1=0,那么代数式(a﹣)的值是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)20.(6分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.21.(6分)在平面直角坐标系中,关于的一次函数的图象经过点,且平行于直线.(1)求该一次函数表达式;(2)若点Q(x,y)是该一次函数图象上的点,且点Q在直线的下方,求x的取值范围.22.(8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:销售单价x(元/kg)

120

130

180

每天销量y(kg)

100

95

70

设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?23.(8分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)24.(10分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm012345y/cm6.04.84.56.07.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.25.(10分)如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE,求证:AF=CE.26.(12分)已知:如图1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:(1)当为t何值时,PQ∥BC;(2)设△AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C为菱形?若存在,求出此时t的值;若不存在,请说明理由.27.(12分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】

过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB//CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.【详解】解:如图:解:过F作FH⊥AE于H,四边形ABCD是矩形,AB=CD,AB∥CD,AE//CF,四边形AECF是平行四边形,AF=CE,DE=BF,AF=3-DE,AE=,∠FHA=∠D=∠DAF=,∠AFH+∠HAF=∠DAE+∠FAH=90,∠DAE=∠AFH,△ADE~△AFH,AE=AF,,DE=,故选D.【点睛】本题主要考查平行四边形的性质及三角形相似,做合适的辅助线是解本题的关键.2、A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.3、B【解析】

连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【详解】连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选B.【点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式.4、B【解析】

先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.5、B【解析】

利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.【详解】解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+26+3=5+26,所以D选项错误.故选:B.【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6、D【解析】

画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.7、A【解析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。解答本题的关键是掌握好有理数的加法、乘方法则。8、A【解析】

根据完全平方公式即可求出答案.【详解】∵(x+)2=x2+2+∴9=2+x2+,∴x2+=7,故选A.【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.9、D【解析】试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.考点:D.10、A【解析】

正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】∴有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.11、C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.12、C【解析】

这个扇形的圆心角的度数为n°,根据弧长公式得到20π=,然后解方程即可.【详解】解:设这个扇形的圆心角的度数为n°,根据题意得20π=,解得n=150,即这个扇形的圆心角为150°.故选C.【点睛】本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径).二、填空题:(本大题共6个小题,每小题4分,共24分.)13、-1.【解析】

观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一个数比右侧的数大一,∴第11行左起第一个数是-1.【点睛】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.14、4:7或2:5【解析】

根据E在CD上和CD的延长线上,运用相似三角形分类讨论即可.【详解】解:当E在线段CD上如图:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴设,即EF=2k,BF=3k∴BE=BF+EF=5k∴EF:BE=2k∶5k=2∶5当当E在线段CD的延长线上如图:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴设,即EF=4k,BF=3k∴BE=BF+EF=7k∴EF:BE=4k∶7k=4∶7故答案为:4:7或2:5.【点睛】本题以矩形为载体,考查了相似三角形的性质,解题的关键在于根据图形分类讨论,即数形结合的灵活应用.15、【解析】试题解析:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,∴P(飞镖落在白色区域)=.16、-2-3【解析】

先求出每个不等式的解集,再求出不等式组的解集,即可得出关于a、b的方程,求出即可.【详解】解:由题意得:解不等式①得:x>1+a,解不等式②得:x≤不等式组的解集为:1+a<x≤不等式组的解集是﹣1<x≤1,..1+a=-1,=1,解得:a=-2,b=-3故答案为:-2,-3.【点睛】本题主要考查解含参数的不等式组.17、y(x+1)(x﹣1)【解析】

观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1).故答案为:y(x+1)(x﹣1).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18、1【解析】分析:先由a2﹣a﹣1=0可得a2﹣a=1,再把(a﹣)的第一个括号内通分,并把分子分解因式后约分化简,然后把a2﹣a=1代入即可.详解:∵a2﹣a﹣1=0,即a2﹣a=1,∴原式===a(a﹣1)=a2﹣a=1,故答案为1点睛:本题考查了分式的化简求值,解题的关键是正确掌握分式混合运算的顺序:先算乘除,后算加减,有括号的先算括号里,整体代入法是求代数式的值常用的一种方法.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.【解析】

(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:开通隧道前,汽车从A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽车从A地到B地比原来少走的路程为[40+40]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.20、(1)y=﹣x2+2x+1;(2)P(,);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【解析】

(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(1,1),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明△BCD为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB两种情况求解即可.【详解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).将C(0,1)、B(1,0)代入y=﹣x2+bx+c得:,解得b=2,c=1.∴抛物线的解析式为y=﹣x2+2x+1.(2)如图所示:作点O关于BC的对称点O′,则O′(1,1).∵O′与O关于BC对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP的最小值=O′A==2.O′A的方程为y=P点满足解得:所以P(,)(1)y=﹣x2+2x+1=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,1,B(1,0),∴CD=,BC=1,DB=2.∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,1),∴OA=1,CO=1.∴.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图所示:连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴,即,解得:AQ=3.∴Q(9,0).综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.21、(1);(2).【解析】

(1)由题意可设该一次函数的解析式为:,将点M(4,7)代入所设解析式求出b的值即可得到一次函数的解析式;(2)根据直线上的点Q(x,y)在直线的下方可得2x-1<3x+2,解不等式即得结果.【详解】解:(1)∵一次函数平行于直线,∴可设该一次函数的解析式为:,∵直线过点M(4,7),∴8+b=7,解得b=-1,∴一次函数的解析式为:y=2x-1;(2)∵点Q(x,y)是该一次函数图象上的点,∴y=2x-1,又∵点Q在直线的下方,如图,∴2x-1<3x+2,解得x>-3.【点睛】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.22、(1)y=﹣0.5x+160,120≤x≤180;(2)当销售单价为180元时,销售利润最大,最大利润是7000元.【解析】试题分析:(1)首先由表格可知:销售单价没涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;(2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.试题解析:(1)∵由表格可知:销售单价没涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;(2)设销售利润为w元,则w=(x﹣80)(﹣0.5x+160)=-12(x-200)2+7200,∵a=-12<0,∴当x<200时,y随x答:当销售单价为180元时,销售利润最大,最大利润是7000元.23、至少涨到每股6.1元时才能卖出.【解析】

根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.【详解】解:设涨到每股x元时卖出,根据题意得1000x-(5000+1000x)×0.5%≥5000+1000,解这个不等式得x≥,即x≥6.1.答:至少涨到每股6.1元时才能卖出.【点睛】本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.24、(1)2.1;(2)见解析;(3)x=2时,函数有最小值y=4.2【解析】

(1)通过作辅助线,应用三角函数可求得HM+HN的值即为x=2时,y的值;(2)可在网格图中直接画出函数图象;(3)由函数图象可知函数的最小值.【详解】(1)当点P运动到点H时,AH=3,作HN⊥AB于点N.∵在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,∴∠HAN=42°,∴AN=HN=AH•sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.故答案为:2.1;(2)(3)根据函数图象可知,当x=2时,函数有最小值y=4.2.故答案为:4.2.【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25、见解析【解析】

易证△ABE≌△CDF,得AE=CF,即可证得△AEF≌△CFE,即可得证.【详解】在平行四边形ABCD中,AB∥CD,AB=CD∴∠ABE=∠CDF,又AE⊥BD,CF⊥BD∴△ABE≌△CDF(AAS),∴AE=CF又∠AEF=∠CFE,EF=FE,∴△AEF≌△CFE(SAS)∴AF=CE.【点睛】此题主要考查平行四边形的性质与全等三角形的判定与性质,解题的关键是熟知平行四边形的性质定理.26、(1)当t=时,PQ∥BC;(2)﹣(t﹣)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQP′C为菱形【解析】

(1)只要证明△APQ∽△ABC,可得=,构建方程即可解决问题;(2)过点P作PD⊥AC于D,则有△APD∽△ABC,理由相似三角形的性质构建二次函数即可解决问题;

(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根据OC=CQ,构建方程即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论