版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省大连市甘井子区中考适应性考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.cos30°=()A. B. C. D.2.据统计,2015年广州地铁日均客运量均为人次,将用科学记数法表示为()A. B. C. D.3.下列运算正确的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3•x=x44.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A.或 B.或C.或 D.或5.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=的图象无交点,则有()A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<06.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A.点B、点C都在⊙A内 B.点C在⊙A内,点B在⊙A外C.点B在⊙A内,点C在⊙A外 D.点B、点C都在⊙A外7.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁8.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A. B. C. D.9.对于点A(x1,y1),B(x2,y2),定义一种运算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【】A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点10.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.12.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____.13.若是关于的完全平方式,则__________.14.如果x3nym+4与﹣3x6y2n是同类项,那么mn的值为_____.15.已知点M(1,2)在反比例函数y=k16.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.17.如图,点分别在正三角形的三边上,且也是正三角形.若的边长为,的边长为,则的内切圆半径为__________.三、解答题(共7小题,满分69分)18.(10分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.19.(5分)先化简,再求值:,其中20.(8分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为_____米/分,a=_____;并在图中画出y2与x的函数图象(2)求小新路过小华家后,y1与x之间的函数关系式.(3)直接写出两人离小华家的距离相等时x的值.21.(10分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=,反比例函数y=的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长.22.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.23.(12分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠1)中的x与y的部分对应值如表x
﹣1
1
1
3
y
﹣1
3
5
3
下列结论:①ac<1;②当x>1时,y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=1的一个根;④当﹣1<x<3时,ax2+(b﹣1)x+c>1.其中正确的结论是.24.(14分)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
直接根据特殊角的锐角三角函数值求解即可.【详解】故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.2、D【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】解:6
590
000=6.59×1.故选:D.【点睛】本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.3、D【解析】A.x4+x4=2x4,故错误;B.(x2)3=x6,故错误;C.(x﹣y)2=x2﹣2xy+y2,故错误;D.x3•x=x4,正确,故选D.4、B【解析】
根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,∴使成立的取值范围是或,故选B.【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.5、D【解析】当k1,k2同号时,正比例函数y=k1x与反比例函数y=的图象有交点;当k1,k2异号时,正比例函数y=k1x与反比例函数y=的图象无交点,即可得当k1k2<0时,正比例函数y=k1x与反比例函数y=的图象无交点,故选D.6、D【解析】
先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.【详解】由题意可求出∠A=30°,AB=2BC=4,由勾股定理得AC==2,AB=4>3,AC=2>3,点B、点C都在⊙A外.故答案选D.【点睛】本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.7、A【解析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.8、B【解析】试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积==10π.故选B.9、A。【解析】∵对于点A(x1,y1),B(x2,y2),,∴如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又∵,∴。∴。令,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,∴互不重合的四点C,D,E,F在同一条直线上。故选A。10、A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为=3,故选A.【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.二、填空题(共7小题,每小题3分,满分21分)11、120°【解析】
设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r,圆心角为n°.由题意:,∴r=4,∴∴n=120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.12、3.05×105【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】305000=3.05×故答案为:3.05×10【点睛】本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法.13、1或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.14、0【解析】根据同类项的特点,可知3n=6,解得n=2,m+4=2n,解得m=0,所以mn=0.故答案为0点睛:此题主要考查了同类项,解题关键是会判断同类项,注意:同类项中含有相同的字母,相同字母的指数相同.15、-2【解析】k==1×(-2)=-216、【解析】【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【详解】∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案为.【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.17、【解析】
根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=(AE+AF-EF)=(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.【详解】解:如图1,⊙I是△ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,
∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如图2,∵△ABC,△DEF都为正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
在△AEF和△CFD中,,
∴△AEF≌△CFD(AAS);
同理可证:△AEF≌△CFD≌△BDE;
∴BE=AF,即AE+AF=AE+BE=a.
设M是△AEF的内心,过点M作MH⊥AE于H,
则根据图1的结论得:AH=(AE+AF-EF)=(a-b);
∵MA平分∠BAC,
∴∠HAM=30°;
∴HM=AH•tan30°=(a-b)•=故答案为:.【点睛】本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH的长是解题关键.三、解答题(共7小题,满分69分)18、(1)详见解析;(2)①67.5°;②90°.【解析】
(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【详解】(1)证明:连接OD,如图所示,∵射线DC切⊙O于点D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①连接AF与DP交于点G,如图所示,∵四边形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此时点P与点O重合,∴此时DE是直径,∴∠EAD=90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.19、;.【解析】
先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值.【详解】解:原式==把代入得:原式=.【点睛】本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.20、(1)60;960;图见解析;(2)y1=60x﹣240(4≤x≤20);(3)两人离小华家的距离相等时,x的值为2.4或12.【解析】
(1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y2与x的函数图象;(2)设所求函数关系式为y1=kx+b,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;(3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x的值即可.【详解】(1)由图可知,小新离小华家240米,用4分钟到达,则速度为240÷4=60米/分,小新按此速度再走16分钟到达书店,则a=16×60=960米,小华到书店的时间为960÷40=24分钟,则y2与x的函数图象为:故小新的速度为60米/分,a=960;(2)当4≤x≤20时,设所求函数关系式为y1=kx+b(k≠0),将点(4,0),(20,960)代入得:,解得:,∴y1=60x﹣240(4≤x≤20时)(3)由图可知,小新到小华家之前的函数关系式为:y=240﹣6x,①当两人分别在小华家两侧时,若两人到小华家距离相同,则240﹣6x=40x,解得:x=2.4;②当小新经过小华家并追上小华时,两人到小华家距离相同,则60x﹣240=40x,解得:x=12;故两人离小华家的距离相等时,x的值为2.4或12.21、(1)k=2;(2)点D经过的路径长为.【解析】
(1)根据题意求得点B的坐标,再代入求得k值即可;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.【详解】(1)∵△AOB和△COD为全等三的等腰直角三角形,OC=,∴AB=OA=OC=OD=,∴点B坐标为(,),代入得k=2;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育心理学在防灾教育中的应用与创新策略
- 心理健康教育的现代发展学生幸福指数的促进因素
- 小学文言文教学中的学生自主学习能力培养
- 安全生产事故应急处置的实战经验分享
- 家长如何为孩子规划未来的职业发展路径
- 教育技术在职业培训领域的应用及趋势
- 工业展会的安全规范与责任边界
- 小学语文课程设计的多元化探索
- 教育心理学在学生思维培养中的应用
- 2025年度道路绿化景观设计施工协议范文集锦3篇
- 2024年项目投资计划书(三篇)
- 配电安规课件
- 中国高血压防治指南(2024年修订版)解读课件
- 沥青路面施工安全培训
- 机电设备安装施工及验收规范
- 仓库安全培训考试题及答案
- 第六单元 中华民族的抗日战争 教学设计 2024-2025学年统编版八年级历史上册
- 初中古诗文言文背诵内容
- 天然气分子筛脱水装置吸附计算书
- 档案管理项目 投标方案(技术方案)
- 苏教版六年级上册100道口算题(全册完整版)
评论
0/150
提交评论