版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第59讲离散型随机变量及其分布列思维导图知识梳理1.离散型随机变量的分布列(1)随着试验结果变化而变化的变量叫做随机变量.所有取值可以一一列出的随机变量叫做离散型随机变量.(2)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则称表Xx1x2…xi…xnPp1p2…pi…pn为离散型随机变量X的概率分布列,简称为X的分布列,具有如下性质:①pi≥0,i=1,2,…,n;②p1+p2+…+pi+…+pn=1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.2.两点分布如果随机变量X的分布列为X01P1-pp其中0<p<1,则称离散型随机变量X服从两点分布.其中p=P(X=1)称为成功概率.3.超几何分布一般地,设有N件产品,其中有M(M≤N)件次品.从中任取n(n≤N)件产品,用X表示取出的n件产品中次品的件数,那么P(X=k)=eq\f(C\o\al(k,M)C\o\al(n-k,N-M),C\o\al(n,N))(k=0,1,2,…,m).X01…mPeq\f(C\o\al(0,M)C\o\al(n-0,N-M),C\o\al(n,N))eq\f(C\o\al(1,M)C\o\al(n-1,N-M),C\o\al(n,N))…eq\f(C\o\al(m,M)C\o\al(n-m,N-M),C\o\al(n,N))其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.如果一个随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.题型归纳题型1离散型随机变量分布列的性质【例1-1】设X是一个离散型随机变量,其分布列为X-101Peq\f(1,3)2-3qq2则q的值为()A.1B.eq\f(3,2)±eq\f(\r(33),6)C.eq\f(3,2)-eq\f(\r(33),6) D.eq\f(3,2)+eq\f(\r(33),6)【例1-2】已知随机变量X的分布规律为P(X=i)=eq\f(i,2a)(i=1,2,3),则P(X=2)=________.【跟踪训练1-1】离散型随机变量X的概率分布规律为P(X=n)=eq\f(a,nn+1)(n=1,2,3,4),其中a是常数,则Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)<X<\f(5,2)))的值为________.【跟踪训练1-2】设离散型随机变量X的分布列为X01234P0.20.10.10.3m(1)求随机变量Y=2X+1的分布列;(2)求随机变量η=|X-1|的分布列;(3)求随机变量ξ=X2的分布列.【名师指导】离散型随机变量的分布列的性质的应用(1)利用“总概率之和为1”可以求相关参数的取值范围或值;(2)利用“离散型随机变量在一范围内的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率;(3)可以根据性质判断所得分布列结果是否正确.题型2超几何分布【例2-1】某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列.【跟踪训练2-1】某大学生志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列.【跟踪训练2-2】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列.【名师指导】1.随机变量是否服从超几何分布的判断若随机变量X服从超几何分布,则满足如下条件:(1)该试验是不放回地抽取n次;(2)随机变量X表示抽取到的次品件数(或类似事件),反之亦然.2.求超几何分布的分布列的步骤第一步,验证随机变量服从超几何分布,并确定参数N,M,n的值;第二步,根据超几何分布的概率计算公式计算出随机变量取每一个值时的概率;第三步,用表格的形式列出分布列.题型3求离散型随机变量的分布列【例3-1】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列.【跟踪训练3-1】有编号为1,2,3,…,n的n个学生,入座编号为1,2,3,…,n的n个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X,已知X=2时,共有6种坐法.(1)求n的值;(2)求随机变量X的分布列.【跟踪训练3-2】甲、乙两人为了响应政府“节能减排”的号召,决定各购置一辆纯电动汽车.经了解目前市场上销售的主流纯电动汽车,按行驶里程数R(单位:公里)可分为三类车型:A:80≤R<150,B:150≤R<250,C:R≥250.甲从A,B,C三类车型中挑选,乙从B,C两类车型中挑选,甲、乙二人选择各类车型的概率如表:车型概率人ABC甲eq\f(1,5)pq乙eq\f(1,4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肠道病毒所致各系统感染病因介绍
- 功能介绍的课件
- 《NFC概述及认证》课件
- 耻骨炎病因介绍
- 智能制造生产线技术及应用 教案 5-2 AGV小车搬运系统
- 特发性骨质疏松病因介绍
- 《专利概述》课件
- 《债的发生原因》课件
- 二零二四年度汽车销售公司承包合同3篇
- 商业楼外墙施工方案(挤苯板、真石漆)
- 【企业盈利能力探析的国内外文献综述2400字】
- 危急值的考试题及答案
- 轻医美技术合作项目协议书范本
- 课件:《中华民族共同体概论》第十五讲:新时代与中华民族共同体建设
- 走进鱼类世界智慧树知到期末考试答案章节答案2024年中国海洋大学
- (正式版)SHT 3227-2024 石油化工装置固定水喷雾和水(泡沫)喷淋灭火系统技术标准
- 大学生国家安全教育智慧树知到期末考试答案2024年
- 2024年中煤鄂尔多斯能源化工有限公司招聘笔试参考题库含答案解析
- 给药错误护理安全警示教育
- 陕09J01 建筑用料及做法图集
- 2024继续教育《医学科研诚信与医学了研究伦理》答案
评论
0/150
提交评论