




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省石家庄市岩峰中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图3,AB是⊙O的直径,P在AB的延长线上,PC切⊙O于C,PC=,BP=1,则⊙O的半径为(
)A.
B.
C.1
D.参考答案:C略2.如图是某四面体ABCD水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD外接球的表面积为()A.20π B. C.25π D.100π参考答案:C【考点】由三视图求面积、体积.【分析】还原三视图成直观图,得到如图所示的三棱锥P﹣ABC,其中AC⊥BC,PA⊥平面ABC,AB=BC=2且PA=3.利用线面垂直的判定与性质,证出PB是Rt△PAB与Rt△PBC公共的斜边,从而得到PB的中点O就是多面体的外接球的球心.再根据勾股定理和球的表面积公式加以计算,可得答案.【解答】解:根据三视图的形状,将该多面体还原成直观图,得到如图所示的三棱锥P﹣ABC.其中△ABC中,AC=4,AB=BC=2,PA⊥平面ABC,PA=3∵PA⊥平面ABC,BC?平面ABC,∴PA⊥BC.∵BC⊥AC,PA∩AC=C,∴BC⊥平面PAC结合PC?平面PAC,得BC⊥PC因此,PB是Rt△PAB与Rt△PBC公共的斜边,设PB的中点为0,则OA=OB=OC=OP=PB.∴PB的中点O就是多面体的外接球的球心∵Rt△ABC中,AC⊥BC,AC=BC=2,∴AB=2.又∵Rt△PAB中,PA=3,∴PB==,所以外接球表面积为S=4πR2=25π.故选:C.【点评】本题给出三视图,求多面体的外接球的表面积.着重考查了三视图的认识、线面垂直的判定与性质、勾股定理和球的表面积公式等知识,属于中档题.3.由“正三角形的内切圆切于三边的中点”可类比猜想:正四面体的内切球切于四个面()A.各正三角形内一点
B.各正三角形的某高线上的点C.各正三角形的中心
D.各正三角形外的某点
参考答案:C四面体的面可以与三角形的边类比,因此三边的中点也就类比成各三角形的中心,所以由“正三角形的内切圆切于三边的中点”可类比猜想:正四面体的内切球切于四个面各正三角形的中心。4. 函数的图象在处的切线的倾斜角为(
) A. B. C. D.参考答案:D略5.程序框图中
的功能是()A.算法的起始与结束
B.算法输入和输出信息C.计算、赋值
D.判断条件是否成立参考答案:B6.已知平面上三点A、B、C满足=3,=4,=5,则的值等于()A.25 B.24 C.﹣25 D.﹣24参考答案:C【考点】平面向量数量积的运算.【分析】通过勾股定理判断出∠B=90,利用向量垂直的充要条件求出=0,利用向量的运算法则及向量的运算律求出值.【解答】解:由=3,=4,=5,可得+=,∴AB⊥BC,=0.则=0+?(+)=?=﹣=﹣25,故选:C.7.如某校高中三年级的300名学生已经编号为0,1,……,299,为了了解学生的学习情况,要抽取一个样本数为60的样本,用系统抽样的方法进行抽取,若第59段所抽到的编号为293,则第1段抽到的编号为(
)A.2
B.3
C.4
D.5参考答案:B略8.在符合互化条件的直角坐标系和极坐标系中,直线L:与曲线C:,则k的取值范围是(
).
C.
D.参考答案:A9.一四面体的三视图如图所示,则该四面体四个面中最大的面积是()A.2 B. C. D.参考答案:D【考点】L!:由三视图求面积、体积.【分析】根据三视图,得到四面体的直观图,然后判断四个面中的最大面积即可.【解答】解:将该几何体放入边长为2的正方体中,由三视图可知该四面体为D﹣BD1C1,由直观图可知,最大的面为BDC1.在正三角形BDC1中,BD=,所以面积S=.故选:D.10.函数f(x)=sinxcosx﹣cos2x+在区间[0,]上的最小值是()A.﹣1 B.﹣ C.1 D.0参考答案:B【考点】三角函数的最值.【分析】把函数解析式利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式积特殊角的三角函数值化为一个角的正弦函数,由x的范围求出这个角的范围,利用正弦函数的图象与性质即可求出f(x)在区间[0,]上的最小值【解答】解:∵f(x)=sinxcosx﹣cos2x+=sin2x﹣cos2x=sin(2x﹣)∴当x∈[0,]时,∴﹣≤2x﹣≤,∴当2x﹣=﹣时,函数的最小值为,故选B.二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是(写出所有正确命题的编号)①存在这样的直线,既不与坐标轴平行又不经过任何整点;②如果k与b都是无理数,则直线y=kx+b不经过任何整点;③如果直线l经过两个不同的整点,则直线l必经过无穷多个整点;④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数;⑤存在恰经过一个整点的直线.参考答案:①③⑤【考点】命题的真假判断与应用.【分析】①举一例子即可说明本命题是真命题;②举一反例即可说明本命题是假命题;③假设直线l过两个不同的整点,设直线l为y=kx,把两整点的坐标代入直线l的方程,两式相减得到两整点的横纵坐标之差的那个点也为整点且在直线l上,利用同样的方法,得到直线l经过无穷多个整点,得到本命题为真命题;④当k,b都为有理数时,y=kx+b可能不经过整点,例如k=,b=;⑤举一例子即可得到本命题为真命题.【解答】解:①令y=x+,既不与坐标轴平行又不经过任何整点,所以本命题正确;②若k=,b=,则直线y=x+经过(﹣1,0),所以本命题错误;设y=kx为过原点的直线,若此直线l过不同的整点(x1,y1)和(x2,y2),把两点代入直线l方程得:y1=kx1,y2=kx2,两式相减得:y1﹣y2=k(x1﹣x2),则(x1﹣x2,y1﹣y2)也在直线y=kx上且为整点,通过这种方法得到直线l经过无穷多个整点,则③正确;④当k,b都为有理数时,y=kx+b可能不经过整点,例如k=,b=,故④不正确;⑤令直线y=x恰经过整点(0,0),所以本命题正确.综上,命题正确的序号有:①③⑤.故答案为:①③⑤.12.已知在同一个球面上,
若,则两点间的球面距离是_____参考答案:.解析:
如图,易得,
,,则此球内接长方体三条棱长为AB、BC、CD(CD的对边与CD等长),从而球外接圆的直径为,R=4则BC与球心构成的大圆如图,因为△OBC为正三角形,则B,C两点间的球面距离是13.设满足约束条件,则的最大值是
.参考答案:514.设的展开式的各项系数之和为,二项式系数之和为,若,则展开式中的系数为___________参考答案:125015.若(1-2x)2013=a0+a1x+…+a2013x2013(x∈R),则值为____参考答案:-1
略16.已知点A(﹣1.0),B(1,0),若圆(x﹣2)2+y2=r2上存在点P,使得∠APB=90°,则实数r的取值范围为
.参考答案:(1,3)【考点】点与圆的位置关系.【专题】方程思想;综合法;直线与圆.【分析】由题意可得两圆相交,而以AB为直径的圆的方程为x2+y2=1,圆心距为2,由两圆相交的性质可得|r﹣1|<2<|r+1|,由此求得r的范围.【解答】解:根据直径对的圆周角为90°,结合题意可得以AB为直径的圆和圆(x﹣2)2+y2=r2有交点,检验两圆相切时不满足条件,故两圆相交.而以AB为直径的圆的方程为x2+y2=1,圆心距为2,故|r﹣1|<2<|r+1|,求得1<r<3,故答案为:(1,3).【点评】本题主要考查直线和圆的位置关系,两圆相交的性质,体现了转化的数学思想,属于基础题.17.甲、乙、丙、丁四位歌手参加比赛,只有其中一位获奖,有人走访了四位歌手,甲说:“是丙获奖”.乙说:“是丙或丁获奖”.丙说:“乙、丁都未获奖”.丁说:“我获奖了”.四位歌手的话只有两句是对的,则获奖的歌手是.参考答案:丁【考点】F4:进行简单的合情推理.【分析】这是一个简单的合情推理题,我们根据“四位歌手的话只有两句是对的”,假设某一个人说的是真话,如果与条件不符,说明假设不成立,如果与条件相符,则假设成立的方法解决问题.【解答】解:若甲对,则乙和丙都对,故甲错;若甲错乙对,则丙错丁对,此时成立,则获奖选手为丁;若甲错乙错,则丁错,不成立.故获奖选手为丁.故答案为:丁.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.试分别用辗转相除法和更相减损术求840与1764、440与556的最大公约数。参考答案:(1)用辗转相除法求840与1764的最大公约数。
1764=8402+84,840=8410+0,所以840与1764的最大公约数就是84。
(2)用更相减损术求440与556的最大公约数。
556-440=116,440-116=324,324-116=208,208-116=92,116-92=24,92-24=68,
68-24=44,44-24=20,24-20=4,20-4=16,16-4=12,12-4=8,8-4=4。
440与556的最大公约数是4。19.设椭圆的两个焦点是,
,且椭圆上存在点使得直线与直线垂直。①求椭圆离心率的取值范围;②若直线与椭圆另一个交点为,当,且的面积为时,求椭圆方程。参考答案:解:①由是直角三角形知,,即,故②设椭圆方程为,由得:.直线的斜率,设直线的方程为:,于是椭圆方程可化为:
把①代入②,得:,整理得:,设.则x1、x2是上述方程的两根,且,.点到直线的距离为,所以:
得:,.所求椭圆方程为:略20.已知复数z=(2+i)m2﹣﹣2(1﹣i).当实数m取什么值时,复数z是:(1)零;(2)虚数;(3)纯虚数;(4)复平面内第二、四象限角平分线上的点对应的复数.参考答案:【考点】复数的代数表示法及其几何意义.【分析】首先把复数进行整理,先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数化成代数形式的标准形式,(1)当这个数字是0时,需要实部和虚部都等于0,(2)当复数是一个虚数时,需要虚部不等于0,(3)当复数是一个纯虚数时,需要实部等于零而虚部不等于0,(4)复平面内第二、四象限角平分线上的点对应的复数,得到实部和虚部的和等于0.解方程即可.【解答】解:复数z=(2+i)m2﹣﹣2(1﹣i)=2=2m2﹣3m﹣2+(m2﹣3m+2)i(1)当这个数字是0时,有2m2﹣3m﹣2=0,m2﹣3m+2=0,∴m=2
(2)当数字是一个虚数,m2﹣3m+2≠0,∴m≠1
m≠2
(3)当数字是一个纯虚数有2m2﹣3m﹣2=0,m2﹣3m+2≠0,∴m=﹣(4)复平面内第二、四象限角平分线上的点对应的复数有2m2﹣3m﹣2+m2﹣3m+2=0,∴m=0或m=221.已知函数f(x)=|2x﹣1|﹣|x+2|.(1)求不等式f(x)>0的解集;(2)若存在x0∈R,使得f(x0)+2a2<4a,求实数a的取值范围.参考答案:【考点】绝对值三角不等式.【专题】转化思想;综合法;不等式的解法及应用.【分析】(1)把f(x)用分段函数来表示,令f(x)=0,求得x的值,可得不等式f(x)>0的解集.(2)由(1)可得f(x)的最小值为f(),再根据f()<4a﹣2a2,求得a的范围.【解答】解:(1)函数f(x)=|2x﹣1|﹣|x+2|=,令f(x)=0,求得x=﹣,或x=3,故不等式f(x)>0的解集为{x|x<﹣,或x>3}.(2)若存在x0∈R,使得f(x0)+2a2<4a,即f(x0)<4a﹣2a2有解,由(1)可得f(x)的最小值为f()=﹣3?﹣1=﹣,故﹣<4a﹣2a2,求得﹣<a<.【点评】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海市各区高三二模语文试题汇编《古诗鉴赏》含答案
- 《网络布局》课件
- 小儿透析失衡综合征的临床护理
- 2025商场租赁合同范本模板
- 2025教科书供货合同范本
- 社工模拟考试卷子及答案
- 山西省一模初中化学试卷及答案
- 三中中学初一试卷及答案
- 2025便捷高效的借款合同
- 老年人社会参与与互助合作考核试卷
- 叶曼讲《道德经》讲义第1~10章
- 肌肉注射操作评分标准
- 配电箱验收记录表
- DB11-T1788-2020技术转移服务人员能力规范
- 建设项目用地预审与选址意见课件讲解
- GB∕T 23524-2019 石油化工废铂催化剂化学分析方法 铂含量的测定 电感耦合等离子体原子发射光谱法
- 宝宝生日祝福可爱卡通电子相册PPT模板
- 盗窃案件现场勘查应注意的问题
- 丽声北极星分级绘本第二级上Dinner for a Dragon 教学设计
- 用人单位职业健康监护档案(一人一档)
- 80吨吊车性能表
评论
0/150
提交评论