![2023-2024学年【全国百强校首发】福建省厦门外国语校中考数学对点突破模拟试卷含解析_第1页](http://file4.renrendoc.com/view5/M01/17/16/wKhkGGY0Ky-AIi2rAAHAPybw8Hg477.jpg)
![2023-2024学年【全国百强校首发】福建省厦门外国语校中考数学对点突破模拟试卷含解析_第2页](http://file4.renrendoc.com/view5/M01/17/16/wKhkGGY0Ky-AIi2rAAHAPybw8Hg4772.jpg)
![2023-2024学年【全国百强校首发】福建省厦门外国语校中考数学对点突破模拟试卷含解析_第3页](http://file4.renrendoc.com/view5/M01/17/16/wKhkGGY0Ky-AIi2rAAHAPybw8Hg4773.jpg)
![2023-2024学年【全国百强校首发】福建省厦门外国语校中考数学对点突破模拟试卷含解析_第4页](http://file4.renrendoc.com/view5/M01/17/16/wKhkGGY0Ky-AIi2rAAHAPybw8Hg4774.jpg)
![2023-2024学年【全国百强校首发】福建省厦门外国语校中考数学对点突破模拟试卷含解析_第5页](http://file4.renrendoc.com/view5/M01/17/16/wKhkGGY0Ky-AIi2rAAHAPybw8Hg4775.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年【全国百强校首发】福建省厦门外国语校中考数学对点突破模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为()A.2 B.﹣2 C.4 D.﹣42.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB3.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=53,则∠B的度数是(
)A.30°B.45°C.50°D.60°4.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是()A. B.C. D.5.下列事件中,必然事件是()A.抛掷一枚硬币,正面朝上B.打开电视,正在播放广告C.体育课上,小刚跑完1000米所用时间为1分钟D.袋中只有4个球,且都是红球,任意摸出一球是红球6.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有(
)A.①② B.③④ C.②③ D.②④7.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A. B. C. D.8.如图,中,E是BC的中点,设,那么向量用向量表示为()A. B. C. D.9.下列说法正确的是()A.2a2b与–2b2a的和为0B.的系数是,次数是4次C.2x2y–3y2–1是3次3项式D.x2y3与–是同类项10.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm二、填空题(共7小题,每小题3分,满分21分)11.已知正方形ABCD,AB=1,分别以点A、C为圆心画圆,如果点B在圆A外,且圆A与圆C外切,那么圆C的半径长r的取值范围是_____.12.被历代数学家尊为“算经之首”的九章算术是中国古代算法的扛鼎之作九章算术中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻一雀一燕交而处,衡适平并燕、雀重一斤问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻将一只雀、一只燕交换位置而放,重量相等只雀、6只燕重量为1斤问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为______.13.将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,,若以点,,为顶点的三角形与相似,则的长度是______.14.已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.15.如图,的顶点落在两条平行线上,点D、E、F分别是三边中点,平行线间的距离是8,,移动点A,当时,EF的长度是______.16.若关于x的不等式组恰有3个整数解,则字母a的取值范围是_____.17.若分式a2-9a+3三、解答题(共7小题,满分69分)18.(10分)解分式方程:19.(5分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=时,求AF的长.20.(8分)如图,已知△ABC中,AB=AC=5,cosA=.求底边BC的长.21.(10分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.(1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)(2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.22.(10分)如图,直线与双曲线相交于、两点.(1),点坐标为.(2)在轴上找一点,在轴上找一点,使的值最小,求出点两点坐标23.(12分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.24.(14分)关于的一元二次方程有实数根.求的取值范围;如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y=(x<0),y=(x>0)的图象上,即可得S△OBD=,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO=,
∴=,
∴=,即,
解得k=±4,
又∵k<0,
∴k=-4,
故选:D.【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。2、A【解析】
根据三角形中位线定理判断即可.【详解】∵AD为△ABC的中线,点E为AC边的中点,
∴DC=BC,DE=AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=S△ABC,C一定成立;DE∥AB,D一定成立;故选A.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.3、D【解析】根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.则sinD=AC∠D=60°∠B=∠D=60°.故选D.“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.4、B【解析】
先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:根据题意,得:,解不等式①,得:x>,解不等式②,得:x>1,∴不等式组的解集为x>1,故选:B.【点睛】本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.5、D【解析】试题解析:A.是可能发生也可能不发生的事件,属于不确定事件,不符合题意;B.是可能发生也可能不发生的事件,属于不确定事件,不符合题意;C.是可能发生也可能不发生的事件,属于不确定事件,不符合题意;D.袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.故选D.点睛:事件分为确定事件和不确定事件.必然事件和不可能事件叫做确定事件.6、C【解析】分析:①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设=2,得到•=2=2,得到当=1时,=2,当=-1时,=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程m+5x+n=0即可得到正确的结论;详解:①由-2x-8=0,得:(x-4)(x+2)=0,解得=4,=-2,∵≠2,或≠2,∴方程-2x-8=0不是倍根方程;故①错误;②关于x的方程+ax+2=0是倍根方程,∴设=2,∴•=2=2,∴=±1,当=1时,=2,当=-1时,=-2,∴+=-a=±3,∴a=±3,故②正确;③关于x的方程a-6ax+c=0(a≠0)是倍根方程,∴=2,∵抛物线y=a-6ax+c的对称轴是直线x=3,∴抛物线y=a-6ax+c与x轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m,n)在反比例函数y=的图象上,∴mn=4,解m+5x+n=0得=,=,∴=4,∴关于x的方程m+5x+n=0不是倍根方程;故选C.点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7、B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.8、A【解析】
根据,只要求出即可解决问题.【详解】解:四边形ABCD是平行四边形,,,,,,,故选:A.【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.9、C【解析】
根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得.【详解】A、2a2b与-2b2a不是同类项,不能合并,此选项错误;B、πa2b的系数是π,次数是3次,此选项错误;C、2x2y-3y2-1是3次3项式,此选项正确;D、x2y3与﹣相同字母的次数不同,不是同类项,此选项错误;故选C.【点睛】本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义.10、B【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【详解】∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣a=8cm,故选B.【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.二、填空题(共7小题,每小题3分,满分21分)11、﹣1<r<.【解析】
首先根据题意求得对角线AC的长,设圆A的半径为R,根据点B在圆A外,得出0<R<1,则-1<-R<0,再根据圆A与圆C外切可得R+r=,利用不等式的性质即可求出r的取值范围.【详解】∵正方形ABCD中,AB=1,
∴AC=,
设圆A的半径为R,
∵点B在圆A外,
∴0<R<1,
∴-1<-R<0,
∴-1<-R<.
∵以A、C为圆心的两圆外切,
∴两圆的半径的和为,
∴R+r=,r=-R,
∴-1<r<.
故答案为:-1<r<.【点睛】本题考查了圆与圆的位置关系,点与圆的位置关系,正方形的性质,勾股定理,不等式的性质.掌握位置关系与数量之间的关系是解题的关键.12、【解析】
设雀、燕每1只各重x斤、y斤,根据等量关系:今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤,列出方程组求解即可.【详解】设雀、燕每1只各重x斤、y斤,根据题意,得整理,得故答案为【点睛】考查二元一次方程组得应用,解题的关键是分析题意,找出题中的等量关系.13、或2【解析】
由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有,得到方程,解得x=,故BF=;当△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;综上BF的长度可以为或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.14、x≥1.【解析】试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点:一次函数与一元一次不等式.15、1【解析】
过点D作于点H,根等腰三角形的性质求得BD的长度,继而得到,结合三角形中位线定理求得EF的长度即可.【详解】解:如图,过点D作于点H,
过点D作于点H,,
.
又平行线间的距离是8,点D是AB的中点,
,
在直角中,由勾股定理知,.
点D是AB的中点,
.
又点E、F分别是AC、BC的中点,
是的中位线,
.
故答案是:1.【点睛】考查了三角形中位线定理和平行线的性质,解题的关键是根据平行线的性质求得DH的长度.16、﹣2≤a<﹣1.【解析】
先确定不等式组的整数解,再求出a的范围即可.【详解】∵关于x的不等式组恰有3个整数解,∴整数解为1,0,﹣1,∴﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点睛】本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a的取值范围是解此题的关键.17、1.【解析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.试题解析:∵分式a2∴a2解得a=1.考点:分式的值为零的条件.三、解答题(共7小题,满分69分)18、无解【解析】
首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零.【详解】解:两边同乘以(x+2)(x-2)得:x(x+2)-(x+2)(x-2)=8去括号,得:+2x-+4=8移项、合并同类项得:2x=4解得:x=2经检验,x=2是方程的增根∴方程无解【点睛】本题考查解分式方程,注意分式方程结果要检验.19、(1)见解析(2)【解析】
(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=从而可求出r的值.【详解】解:(1)连接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=∴∴【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.20、【解析】
过点B作BD⊥AC,在△ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.【详解】解:过点B作BD⊥AC,垂足为点D,在Rt△ABD中,,∵,AB=5,∴AD=AB·cosA=5×=3,∴BD=4,∵AC=5,∴DC=2,∴BC=.【点睛】本题考查了锐角的三角函数和勾股定理的运用.21、(1)见解析;(2)【解析】
(1)根据题意作出图形即可;(2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD==2,根据三角函数的定义即可得到结论.【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD′,∵PD′⊥PD,∴∠DPD′=90°,∵∠A=90°,∴∠ADP+∠APD=∠APD+∠BPD′=90°,∴∠ADP=∠BPD′,在△ADP与△BPD′中,,∴△ADP≌△BPD′,∴AD=PB=4,AP=BD′∵PB=AB﹣AP=6﹣AP=4,∴AP=2;∴PD==2,BD′=2∴CD′=BC-BD′=4-2=2∵PD=PD′,PD⊥PD′,∵DD′=PD=2,∵PQ垂直平分DD′,连接QD′则DQ=D′Q∴∠QD′D=∠QDD′∴sin∠QD′D=sin∠QDD′=.【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.22、(1),;(1),.【解析】
(1)由点A在一次函数图象上,将A(-1,a)代入y=x+4,求出a的值,得到点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
(1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA.利用待定系数法求出直线A′B′的解析式,进而求出P、Q两点坐标.【详解】解:(1)把点A(-1,a)代入一次函数y=x+4,
得:a=-1+4,解得:a=3,
∴点A的坐标为(-1,3).
把点A(-1,3)代入反比例函数y=,
得:k=-3,
∴反比例函数的表达式y=-.
联立两个函数关系式成方程组得:解得:或∴点B的坐标为(-3,1).
故答案为3,(-3,1);(1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示.
∵点B、B′关于x轴对称,点B的坐标为(-3,1),
∴点B′的坐标为(-3,-1),PB=PB′,
∵点A、A′关于y轴对称,点A的坐标为(-1,3),
∴点A′的坐标为(1,3),QA=QA′,
∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.
设直线A′B′的解析式为y=mx+n,
把A′,B′两点代入得:解得:∴直线A′B′的解析式为y=x+1.
令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),
令x=0,则y=1,点Q的坐标为(0,1).【点睛】本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2012建筑租赁合同范本
- 人防租赁转让合同范本
- 分项劳务合同范本
- 加盟销售合同范例
- 人情补偿写合同范本
- 出租车司机加盟合同范本
- 2025年中国恒转矩变频器行业市场深度研究及投资战略规划报告
- 上海建筑施工合同范本
- 2025年中国工业防水插座行业市场发展前景及发展趋势与投资战略研究报告
- 公司联营股合同范本
- 中国氢内燃机行业发展环境、市场运行格局及前景研究报告-智研咨询(2024版)
- 开学季初三冲刺中考开学第一课为梦想加油课件
- 《自然保护区划分》课件
- 2025年普通卷钉项目可行性研究报告
- 中日合同范本
- T-CARM 002-2023 康复医院建设标准
- 《康复按摩知识》课件
- 立式加工中心说明书
- 唐太宗李世民
- 作文纸格子信纸
- 第八版神经病学配套课件-12-中枢神经系统感染性疾病
评论
0/150
提交评论