上海市炎培高级中学高一数学理知识点试题含解析_第1页
上海市炎培高级中学高一数学理知识点试题含解析_第2页
上海市炎培高级中学高一数学理知识点试题含解析_第3页
上海市炎培高级中学高一数学理知识点试题含解析_第4页
上海市炎培高级中学高一数学理知识点试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市炎培高级中学高一数学理知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列四个函数:①;②;③;④.其中值域为的函数有

)A、1个

B、2个

C、3个

D、4个参考答案:B2.已知集合M={x|x<3},N={x|},则M∩N=(

)A.

B.{x|0<x<3}

C.{x|1<x<3}

D.{x|2<x<3}参考答案:C3.若的三个内角满足,则

()A.一定是锐角三角形 B.一定是直角三角形

C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形参考答案:C略4.有以下四个对应:(1),,对应法则求算术平方根;(2),,对应法则求平方根;(3),对应法则;(4)A={平面内的圆},B={平面内的三角形},对应法则作圆内接三角形。其中映射的个数是(

)A

0

B

1

C

2

D

3参考答案:C5.已知函数f(x)=logax+x﹣3(a>0且a≠1)有两个零点x1,x2,且x1<x2,若x2∈(3,4),则实数a的取值范围是()A. B. C.(1,4) D.(4,+∞)参考答案:A【考点】函数的图象;对数函数的图象与性质.【分析】函数f(x)有两个不同的零点,可转化为函数y=logax与y=3﹣x的图象有两个交点,在同一坐标系中,分别作出这两个函数的图象,观察图象,可得答案.【解答】解:若函数f(x)有两个不同的零点,则函数y=logax与y=3﹣x的图象有两个交点,在同一坐标系中,分别作出这两个函数的图象,如下图所示:观察图象,可知若使二者有两个交点,须使0<a<1;而若使x2∈(3,4),又须使解得.故选:A6.函数的图象必经过点

)A.(0,1)

B.(2,0)

C.(2,1)

D.(2,2)参考答案:D7.若,则下列结论一定成立的是

A.

B.

C.

D.参考答案:C8.函数y=2sin(ωx+φ)(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.ω=, φ=B.ω=,φ=C.ω=,φ=D.ω=,φ=参考答案:B【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先利用图象中求得函数的周期,求得ω,最后根据x=2时取最大值,求得φ,即可得解.【解答】解:如图根据函数的图象可得:函数的周期为(6﹣2)×4=16,又∵ω>0,∴ω==,当x=2时取最大值,即2sin(2×+φ)=2,可得:2×+φ=2kπ+,k∈Z,∴φ=2kπ+,k∈Z,∵0<φ<π,∴φ=,故选:B.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了学生基础知识的运用和图象观察能力,属于基本知识的考查.9.在△ABC中,若a=2,,,则B等于(

)

A、

B、或

C、

D、或参考答案:10.已知函数,则在上的零点个数为

(

)A.1个

B.2个

C.3个

D.4个

参考答案:略二、填空题:本大题共7小题,每小题4分,共28分11.已知函数(的反函数是),对于函数,当时,最大值与最小值的差是,求则的值为___________.参考答案:的反函数为,∴.∵,∴在上单调递增.∴.∴.12.设,则的最小值为

.参考答案:13.圆与圆相外切,则半径r的值为

.参考答案:4圆的圆心为(0,0),半径为,圆的圆心为,半径为1,圆心距为,两圆外切,,解得,故答案为4.

14.若函数是奇函数且,则

.参考答案:略15.如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是________(写出所有正确命题的编号).①当时,S为四边形;②当时,S为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;

⑤当时,S的面积为.参考答案:①②③⑤16.如图,在直角梯形ABCD中,AB∥CD,E为下底CD上的一点,若AB=CE=2,DE=3,AD=5,则tan∠EBC=.参考答案:.【考点】两角和与差的正切函数.【分析】过B作BF⊥DC,垂足为F,由已知求出tan∠CBF,tan∠EBF的值,再由tan∠EBC=tan(∠CBF﹣∠EBF),展开两角差的正切得答案.【解答】解:如图,过B作BF⊥DC,垂足为F,则EF=DE﹣DF=DE﹣AB=1.∴CF=CE+EF=3.∴tan∠CBF=,tan∠EBF=.则tan∠EBC=tan(∠CBF﹣∠EBF)==.故答案为:.17.过点且被圆截得的弦长为8的直线方程为

参考答案:或三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)如果函数f(x)在其定义域内存在实数x0,使得成立,则称函数f(x)有“漂移点”.(Ⅰ)试判断函数是否为有“漂移点”?并说明理由;(Ⅱ)证明:函数有“漂移点”;(Ⅲ)设函数有“漂移点”,求实数a的取值范围.参考答案:解:(Ⅰ)的定义域为,假设有“漂移点”,则方程在上有解,即,所以(),因为,所以方程无实数解,所以没有“漂移点”......4分(Ⅱ)证明:的定义域为令,因为在上单调递增且是连续函数,又因为,由零点存在性定理可得:,使得,即,使得,所以函数有“漂移点”......8分(Ⅲ)由题意可得,的定义域为,因为有“漂移点”.,所以关于的方程有解,即有解,所以,即,,方法一:由可得:,因为,所以,,方法二:由可得:,若,方程无解;若,方程可化为,因为,所以,所以,即,解得.....12分

19.已知圆C:,直线。(1)当为何值时,直线与圆C相切;(2)当直线与圆C相交于A、B两点,且AB=时,求直线的方程.参考答案:(1)把圆C:,化为,得圆心,半径,再求圆心到直线的距离,,解得.(2)设圆心到直线的距离,则,则,得或;直线的方程为:或20.已知集合,,.(1)求,;(2)若,求a的取值范围.参考答案:

(2分),

(5分)(2)由(1)知,①当时,满足,此时,得;

(7分)②当时,要,则,解得;

(10分)略21.已知函数.(1)求函数的单调递增区间;(只需写出结论即可)(2)设函数,若在区间(-1,3)上有两个不同的零点,求实数a的取值范围;(3)若存在实数,使得对于任意的,都有成立,求实数a的最大值.参考答案:(1)函数的单调递增区间为………………3分(不要求写出具体过程)(2)由题意知,即得;………………8分(3)设函数由题意,在上的最小值不小于在上的最大值,当或时,在区间[-2,-1]单调递增,当时,,∴存在,使得成立,即,.a的最大值为.………………12分22.在平面直角坐标xOy中,圆与圆相交与PQ两点.(I)求线段PQ的长.(II)记圆O与x轴正半轴交于点M,点N在圆C上滑动,求面积最大时的直线NM的方程.参考答案:(I);(II)或.【分析】(I)先求得相交弦所在的直线方程,再求得圆的圆心到相交弦所在直线的距离,然后利用直线和圆相交所得弦长公式,计算出弦长.(II)先求得当时,取得最大值,根据两直线垂直时斜率的关系,求得直线的方程,联立直线的方程和圆的方程,求得点的坐标,由此求得直线的斜率,进而求得直线的方程.【详解】(I)由圆O与圆C方程相减

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论