版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京牛堡屯学校高二数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.过p(1,2),且与A(2,3)和B(4,-5)的距离相等的直线方程是(
)A.
B.
C.或
D.以上都不对参考答案:C略2.设函数g(x)是R上的偶函数,当x<0时,g(x)=ln(1﹣x),函数满足f(2﹣x2)>f(x),则实数x的取值范围是()A.(﹣∞,1)∪(2,+∞) B.(﹣∞,﹣2)∪(1,+∞) C.(1,2) D.(﹣2,1)参考答案:D【考点】函数奇偶性的性质.【分析】判断函数的单调性,转化不等式为代数不等式,求解即可.【解答】解:当x≤0时,f(x)=x3,是增函数,并且f(x)≤f(0)=0;当x<0时,g(x)=ln(1﹣x)函数是减函数,函数g(x)是R上的偶函数,x>0,g(x)是增函数,并且g(x)>g(0)=0,故函数f(x)在R是增函数,f(2﹣x2)>f(x),可得:2﹣x2>x,解得﹣2<x<1.故选:D.3.如图所示,已知两座灯塔A、B与海洋观测站C的距离都等于,灯塔A在观测站C的北偏东,灯塔B在观测站C的南偏东,则灯塔A与灯塔B的距离为A.B.C.
D.参考答案:C4.如图,E为正方体的棱AA1的中点,F为棱AB上的一点,且∠C1EF=90°,则AF:FB=(
)A.1:1 B.1:2 C.1:3 D.1:4参考答案:C【考点】棱柱的结构特征.【专题】空间位置关系与距离.【分析】设出正方体的棱长,求出C1E,利用∠C1EF=90°,通过C1F求出x的值,即可得到结果.【解答】解:解:设正方体的棱长为:2,由题意可知C1E==3,∠C1EF=90°,所以设AF=x,12+x2+C1E2=22+22+(2﹣x)2,解得:x=,所以AF:FB=:=1:3;故选:C.【点评】本题是基础题,考查正方体的变的计算,考查直角三角形的利用,长方体的性质,考查计算能力.5.阅读右面的流程图,若输入的a、b、c分别是21、32、75,则输出的a、b、c分别是:(
)A.75、21、32
B.21、32、75C.32、21、75
D.75、32、21参考答案:A6.已知θ为锐角,且sinθ=,则sin(θ+45°)=()A.B.C.D.参考答案:A【考点】两角和与差的正弦函数.【分析】由已知利用同角三角函数基本关系式可求cosθ,进而利用两角和的正弦函数公式,特殊角的三角函数值即可计算得解.【解答】解:∵θ为锐角,且sinθ=,∴cosθ==,∴sin(θ+45°)=(sinθ+cosθ)=×()=.故选:A.【点评】本题主要考查了同角三角函数基本关系式,两角和的正弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.7.在△ABC中,
,,,则=(
)w.w.w.k.s.5.u.c.o.m
A.
B.或
C.或
D.参考答案:B8.若函数满足:,则的最小值为(
)A.
B.
C.
D.参考答案:B9.若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17,记f1(n)=f(n),f2=f(f1(n))…fk+1=fk(f(n)),k∈N*则f2016(8)=()A.3 B.5 C.8 D.11参考答案:C【考点】归纳推理.【分析】根据题中的对应法则,算出f1(8)、f2(8)、f3(8)、f4(8)的值,从而发现规律fk+3(8)=fk(8)对任意k∈N*成立,由此即可得到答案.【解答】解:∵82+1=65,∴f1(8)=f(8)=6+5=11,同理,由112+1=122得f2(8)=1+2+2=5;由52+1=26,得f3(8)=2+6=8,可得f4(8)=6+5=11=f1(8),f5(8)=f2(8),…,∴fk+3(8)=fk(8)对任意k∈N*成立又∵2016=3×672,∴f2016(8)=f2013(8)=f2000(8)=…=f3(8)=8.故选:C.10.某几何体的三视图如图所示,则该几何体的体积的最大值为()A. B. C. D.参考答案:A【考点】由三视图求面积、体积.【分析】几何体是一个三棱锥,三棱锥的底面是一条直角边为1,斜边为b的直角三角形,另一条直角边是,三棱锥的一条侧棱与底面垂直,由勾股定理可知这条边是,表示出体积,根据不等式基本定理,得到最值.【解答】解:由三视图知,几何体是一个三棱锥,三棱锥的底面是一条直角边为1,斜边为b的直角三角形,∴另一条直角边是,三棱锥的一条侧棱与底面垂直,由勾股定理可知这条边是,∴几何体的体积是V=×,∵在侧面三角形上有a2﹣1+b2﹣1=6,∴V=,当且仅当侧面的三角形是一个等腰直角三角形,故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.已知﹣=,则C21m=
.参考答案:210【考点】D5:组合及组合数公式.【分析】由组合数性质得﹣=,由此求出m,进而能求出结果.【解答】解:∵﹣=,∴﹣=,化简,得:6×(5﹣m)!﹣(6﹣m)!=,6﹣(6﹣m)=,∴m2﹣23m+42=0,解得m=2或m=21(舍去),∴=210.故答案为:210.12.如图,A,B为抛物线y2=4x上的两点,F为抛物线的焦点且FA⊥FB,C为直线AB上一点且横坐标为﹣1,连结FC.若|BF|=3|AF|,则tanC=.参考答案:【考点】抛物线的简单性质.【分析】如图所示,设|AF|=a,|BF|=3a,可得|AB|=a,做FH⊥AB于H,求出|FH|,|CH|,即可得出结论.【解答】解:如图所示,设|AF|=a,|BF|=3a,可得|AB|=a,作AA′⊥l(l为抛物线的准线),则|AA′|=|AF|=a,|BB′|=|BF|=3a,|A′B′|=|AD|=a.△CA′A∽△CB′B,可得=,CA=AB=a,做FH⊥AB于H,△ABF三边长为a,3a,a,∴|FH|=a,|AH|=a,∴tanC===,故答案为.13.数列2,5,11,20,X,47,。。。。;根据规律X=
归纳猜想通项=
参考答案:32,略14.若直线l过点(2,1),且在x轴、y轴上的截距相等,则直线l的方程为_______。参考答案:15.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为__________。参考答案:略16.从中,可得一般规律为
.参考答案:17.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数f(x)=lnx﹣ax+﹣1.(1)当a=1时,求曲线f(x)在x=1处的切线方程;(2)当a=时,求函数f(x)的单调区间;(3)在(2)的条件下,设函数g(x)=x2﹣2bx﹣,若对于?x1∈[1,2],?x1∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.参考答案:【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(1)求出函数的导数,求出切线的斜率和切点坐标,即可得到切线方程;(2)求出导数,令导数大于0,得到增区间,令小于0,得到减区间,注意定义域;(3)对于?x1∈[1,2],?x2∈[0,1]使f(x1)≥g(x2)成立?g(x)在[0,1]上的最小值不大于f(x)在[1,2]上的最小值.讨论b<0,0≤b≤1,b>1,g(x)的最小值,检验它与f(x)的最小值之间的关系,即可得到b的范围.【解答】解:函数f(x)的定义域为(0,+∞),f′(x)=﹣a﹣
(1)当a=1时,f(x)=lnx﹣x﹣1,∴f(1)=﹣2,f′(x)=﹣1,∴f′(1)=0∴f(x)在x=1处的切线方程为y=﹣2.(2)f′(x)=﹣=﹣.∴当0<x<1,或x>2时,f′(x)<0;
当1<x<2时,f′(x)>0.当a=时,函数f(x)的单调增区间为(1,2);单调减区间为(0,1),(2,+∞).(3)当a=时,由(2)可知函数f(x)在(1,2)上为增函数,∴函数f(x)在[1,2]上的最小值为f(1)=﹣若对于?x1∈[1,2],?x2∈[0,1]使f(x1)≥g(x2)成立?g(x)在[0,1]上的最小值不大于f(x)在[1,2]上的最小值(*)
又g(x)=x2﹣2bx﹣=(x﹣b)2﹣b2﹣,x∈[0,1],①当b<0时,g(x)在[0,1]上为增函数,[g(x)]min=g(0)=﹣>﹣与(*)矛盾
②当0≤b≤1时,[g(x)]min=g(b)=﹣b2﹣,由﹣b2﹣及0≤b≤1,得,≤b≤1;
③当b>1时,g(x)在[0,1]上为减函数,[g(x)]min=g(1)=﹣2b及b>1得b>1.综上,b的取值范围是[,+∞).19.若不等式的解集是(1)解不等式;(2)若的解集为R,求b的取值范围。参考答案:解:(1)由题意得解得所以不等式为即解得或,故不等式的解集为(2)由(1)得不等式为,由其解集为R得,解得,故的取值范围为略20.(本题满分12分)阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.
应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;参考答案:(1),
而,当且仅当时取到等号,则,即的最小值为.(2),
而,,当且仅当,即时取到等号,则,所以函数的最小值为.
21.(6分)已知函数在处有极大值8,求实数的值.参考答案:
,由可得略22.如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,求:(1)三角形的面积;(2)异面直线与所成的角的大小。参考答案:(1)∵PA⊥底面ABCD,∴PA⊥CD,又∵CD⊥AD,∴CD⊥平面PA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑项目合同支付情况管理
- 电力站给水设施施工合同
- 高楼大厦基础钻探施工合同
- 展览馆硅PU施工合同
- 企业网络升级网线施工合同
- 居民区宠物粪便清理保洁员合同
- 湖北第二师范学院《数学分析II》2021-2022学年第一学期期末试卷
- 湖北大学知行学院《中国文学史(四)》2022-2023学年第一学期期末试卷
- 2024合同模板房 屋 买 卖 合 同范本
- 2024安装工程合同范本
- 2024年黑龙江检察机关法院书记员招聘笔试参考题库附带答案详解
- 中考命题作文预测及导写:“一步一步往前走”
- 口腔消毒灭菌知识培训课件
- 针刺治疗颈椎病
- 室内设计大学生职业生涯规划模板
- 工程人员服务意识培训课件
- 儿童视力保护培训课件
- 玻璃制品行业员工转正汇报
- 科学人教鄂教版六年级上册全册分层练习含答案
- 新时代十年生态文明建设成就
- 末梢采血护理课件
评论
0/150
提交评论