版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京密云县新农村中学高三数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.i是虚数单位,若
(a,b∈R),则乘积ab的值是A.-15
B.-3
C.3
D.15参考答案:B∵.∴a=-1,b=3.∴ab=-3,故选择B.2.直线的倾斜角的取值范围是
(
)A.
B.C.
D.
参考答案:B3.下列命题中真命题的个数是()①x∈R,x4>x2;②若“p∧q”是假命题,则p,q都是假命题;③命题“x∈R,x3﹣x2+1≤0”的否定是“x∈R,x3﹣x2+1>0”. A.0 B. 1 C. 2 D. 3参考答案:考点: 命题的否定;四种命题的真假关系.专题: 阅读型.分析: 要说明一个命题不正确,举出反例即可①当x=0时不等式不成立,②根据复合命题真值表可知,“p∧q”是假命题,只需两个命题中至少有一个为假即可;③全称命题的否定是特称命题,既要对全称量词进行否定,又要否定结论,故正确.解答: 解:易知①当x=0时不等式不成立,对于全称命题只要有一个情况不满足,命题即假;②错,只需两个命题中至少有一个为假即可;③正确,全称命题的否定是特称命题,即只有一个命题是正确的,故选B.点评: 此题是个基础题.考查命题的否定和复合命题的真假判定方法等基础知识,考查学生对基础知识的记忆和理解.4.已知,,,若,,三向量共面,则实数等于(
)A.
B.
C.
D.参考答案:D5.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,已知直角边长为2,
则这个几何体的体积为
(
)
A.
B.
C.4
D.8参考答案:A略6.函数的图象大致为参考答案:D7.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任意两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各面都是面积相等的三角形,同一顶点上的任意两条棱的夹角都相等.A.①B.②C.①②③D.③参考答案:C略8.设等差数列的前项和为,若,则(
)A.
B.
C.
D.参考答案:D9.执行如图所示的程序,若输出的结果是4,则判断框内实数的值可以是A.1
B.
2
C.3
D.4参考答案:B由输出的结果是4,因此从循环结构出来时的值是,但循环结构是从-1开始的每循环一次就增加1,所以从循环结构出来时的值是2,即循环结构到2时结束,则的值是2。10.定义:F(x,y)=yx(x>0,y>0),已知数列{an}满足:an=(n∈N*),若对任意正整数n,都有an≥ak(k∈N*)成立,则ak的值为()A. B.2 C. D.参考答案:D【考点】数列与函数的综合;数列的函数特性.【分析】根据题意可求得数列{an}的通项公式,进而求得,根据2n2﹣(n+1)2=(n﹣1)2﹣2,进而可知当n≥3时,(n﹣1)2﹣2>0,推断出当n≥3时数列单调增,n<3时,数列单调减,进而可知n=3时an取到最小值求得数列的最小值,进而可知ak的值.【解答】解:∵F(x,y)=yx(x>0,y>0),∴an==∴==,∵2n2﹣(n+1)2=(n﹣1)2﹣2,当n≥3时,(n﹣1)2﹣2>0,∴当n≥3时an+1>an;当,n<3时,(n﹣1)2﹣2<O,所以当n<3时an+1<an.∴当n=3时an取到最小值为f(3)=故选D【点评】本题主要考查了数列和不等式的综合运用.考查了学生综合运用所学知识解决问题的能力.二、填空题:本大题共7小题,每小题4分,共28分11.函数f(x)是定义在R上的奇函数,对任意的x∈R,满足f(x+1)+f(x)=0,且当0<x<1时,f(x)=2x,则f()+f(4)=.参考答案:﹣
【考点】函数奇偶性的性质.【专题】转化思想;定义法;函数的性质及应用.【分析】根据条件判断函数的周期性,利用函数奇偶性和周期性的关系将条件进行转化进行求解即可.【解答】解:∵f(x)是定义在R上的奇函数,对任意的x∈R,满足f(x+1)+f(x)=0,∴f(x+1)=﹣f(x),则f(x+2)=﹣f(x+1)=f(x),则函数f(x)是周期为2的周期函数,则f(4)=f(0)=0,∵当0<x<1时,f(x)=2x,∴f(﹣)=f(﹣+2)=f(﹣)=﹣f()=﹣=﹣,则f(﹣)+f(4)=﹣+0=﹣,故答案为:﹣.【点评】本题主要考查函数值的计算,根据条件判断函数的周期性,利用是周期性和奇偶性进行转化是解决本题的关键.12.古希腊数学家阿波罗尼奥斯发现:平面上到两定点A、B距离之比为常数且的点的轨迹是一个圆心在直线AB上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体ABCD-A1B1C1D1中,,点E在棱AB上,,动点P满足.若点P在平面ABCD内运动,则点P所形成的阿氏圆的半径为________;若点P在长方体ABCD-A1B1C1D1内部运动,F为棱C1D1的中点,M为CP的中点,则三棱锥的体积的最小值为___________.参考答案:
【分析】(1)以AB为轴,AD为轴,为轴,建立如图所示的坐标系,设,求出点P的轨迹为,即得解;(2)先求出点P的轨迹为,P到平面的距离为,再求出的最小值即得解.【详解】(1)以AB为轴,AD为轴,为轴,建立如图所示的坐标系,则设,由得,所以,所以若点在平面内运动,则点所形成的阿氏圆的半径为.(2)设点,由得,所以,由题得所以设平面的法向量为,所以,由题得,所以点P到平面的距离为,因为,所以,所以点M到平面的最小距离为,由题得为等边三角形,且边长为,所以三棱锥的体积的最小值为.故答案为:
.【点睛】本题主要考查空间几何中的轨迹问题,考查空间几何体体积的计算和点到平面距离的计算,考查最值的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.如图,AB是圆O的直径,C、D是圆O上的点,.,则________.参考答案:略14.已知M是抛物线x2=4y上一点,F为其焦点,点A在圆C:(x+1)2+(y-5)2=1上,则|MA|+|MF|的最小值是
.参考答案:515.已知数列与满足,且,则
.参考答案:由,当,;当,.由,令,得:,①令,得:,②①-②得:.从而得:,,…….上述个式子相加得:.由①式可得:,得.所以.故答案为:.
16.已知函数f(x)=ln(mex+ne-x)+m为偶函数,且f(0)=2+ln4,则m=,不等式f(x)≤f(m+n)的解集为.
参考答案:2,[-4,4]. 本题主要考查函数的奇偶性、单调性等基础知识,意在考查转化与化归等数学思想,考查考生的运算求解能力、分析问题和解决问题的能力.先根据偶函数得到m=n,再利用f(0)=2+ln4得到m=2,所以不等式f(x)≤f(m+n)可转化为f(x)≤f(4).由于f(x)为偶函数,所以f(-x)=f(x),可得m=n,又f(0)=ln(2m)+m=2+ln4,则m=2.f(x)≤f(m+n)=f(4),即ln[2(ex+e-x)]+2≤ ln[2(e4+e-4)]+2,ex+e-x≤e4+e-4,令g(x)=ex+e-x,则g(x)为偶函数,当x>0时,g(x)单调递增,当x<0时,g(x)单调递减,若g(x)≤g(4),则-4≤x≤4,即所求不等式的解集为{x|-4≤x≤4}.17.不等式组表示的平面区域的面积是___________.参考答案:不等式组表示的区域为三角形,由题意知,所以平面区域的面积。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,四棱锥P-ABCD,底面ABCD为直角梯形,,.(1)
若E为PD的中点,证明CE平面APB;(2)
若PA=PB,PC=PD.证明:平面APB平面ABCD.
参考答案:(1)证明:略;(2)证明:略.
解析:(1)取PA中点F,连接EF,BF,因为E为PD中点,所以且,因为,所以且,所以EFBC为平行四边形,所以-----4分因为平面APB,平面APB,所以平面APB.-----6分(2)取CD中点G,AB中点H,连接PG,HG,PH.CD中点G,,-----8分是AB中点,又,--10分平面PHG,平面PHG,平面PHG,平面PHG
.平面ABCD,平面ABCD,AB与CD相交,平面ABCD.平面PAB
平面APB平面ABCD.-------12分
略19.(2017?凉山州模拟)如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.(1)证明:AG∥平面BDE.(2)求平面BDE和平面ADE所成锐二面角的余弦值.参考答案:【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)以C为原点,CD为x轴,CB为y轴,CE为z轴,建立空间直角坐标系,利用向量法能证明AG∥平面BDE.(2)求出平面ADE的法向量和平面BDE的法向量,利用向量法能求出平面BDE和平面ADE所成锐二面角的余弦值.【解答】证明:(1)∵平面ABCD⊥平面BCEG,平面ABCD∩平面BCEG=BCCE⊥BC,CE?平面BCEG,∴EC⊥平面ABCD,以C为原点,CD为x轴,CB为y轴,CE为z轴,建立空间直角坐标系,B(0,2,0),D(2,0,0),E(0,0,2),A(2,1,0),G(0,2,1),设平面BDE的法向量为=(x,y,z),=(0,2,﹣2),=(2,0,﹣2),∴,取x=1,得=(1,1,1),∵=(﹣2,1,1),∴=0,∴⊥,∵AG?平面BDE,∴AG∥平面BDE.解:(2)设平面ADE的法向量=(a,b,c),=(0,1,0),=(﹣2,0,2),则,取x=1,得=(1,0,1),由(1)得平面BDE的法向量为=(1,1,1),设平面BDE和平面ADE所成锐二面角的平面角为θ,则cosθ===.∴平面BDE和平面ADE所成锐二面角的余弦值为.【点评】本题考查线面平面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.20.已知矩阵,,计算.参考答案:试题分析:利用矩阵特征值及其对应特征向量性质:进行化简.先根据矩阵M的特征多项式求出其特征值,进而求出对应的特征向量,.再将分解成特征向量,即,最后利用性质求结果,即21.设函数(1)当时,解不等式;(2)若存在,使得成立,求a的取值范围.参考答案:(1)或;(2).【分析】(1)当时,利用零点法进行分类,求出不等式的解集;(2)若存在,使得成立,即,根据之间的大小关系,进行分类,最后求出的取值范围.【详解】解:(1)当时,,或或,即,或,或,即或.(2)即,当时,恒成立;当时,,可知,得;当时,,同理,得.综上,的取值范围为.【点睛】本题考查了解绝对值不等式,考查了不等式存在性问题,正确的分类是解题的关键.22.如图,已知直三棱柱ABC-A1B1C1中,AB=AC,D、E分别为BC、CC1中点,BC1⊥B1D.求证:(1)DE∥平面ABC1;(2)平面AB1D⊥平面ABC1.参考答案:证明:(1)∵D、E分别为BC、CC1中点,∴DE∥B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度滴灌带生产线设备更新改造合同
- 04版股权转让合同(含稀释与并购)
- 2024年度产品研发与技术转让合同:科研机构与企业之间的合同3篇
- 2024年度耐高温滤袋材料生产合同
- 2024年度碳排放权交易与环保服务合同
- 2024年度棉花田土壤改良服务协议
- 《家电回收》课件
- 财务报表课件教学
- 2024年度股权转让合同违约责任及违约金支付
- 2024年度旅游服务与接待合同主要条款
- TDACS 012-2024 中国奶牛品种登记规程
- 2024至2030年中国综合能源服务行业运营动态及投资规模预测报告
- 人教版高中数学A版 必修第1册《第二章 一元二次函数、方程和不等式》大单元整体教学设计
- 期末全真模拟测试卷2(试题)2024-2025学年二年级上册数学苏教版
- 九上名著《水浒传》人物深度分析 鲁智深
- 《计算机控制系统》课后题答案-刘建昌
- 运输行业安全风险管控
- 2024时事政治试题库(附含答案)
- ISO 55013-2024 资产管理-数据资产管理指南(中文版-雷泽佳翻译-2024)
- 2024-2025学年湖南省常德市小学六年级英语上册期末同步自测试卷及答案
- 2024年贵州公安厅事业单位笔试真题
评论
0/150
提交评论