版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省六盘水市名校2023-2024学年中考试题猜想数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A. B. C. D.2.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.
B.
C.
D.3.如图,已知E,B,F,C四点在一条直线上,,,添加以下条件之一,仍不能证明≌的是A. B. C. D.4.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D5.下列运算正确的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2•a3=a6D.5a+2b=7ab6.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元7.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到,则四边形的周长为()A.8 B.10 C.12 D.168.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是()A.中位数不相等,方差不相等B.平均数相等,方差不相等C.中位数不相等,平均数相等D.平均数不相等,方差相等9.把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x) B.ax2(x﹣2)C.ax(x+1)(x﹣1) D.ax(x﹣1)210.下面运算结果为的是A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.12.如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是__________.13.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是_________.14.如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为.15.如图,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=14,则BC的长为_____.16.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.17.抛物线(为非零实数)的顶点坐标为_____________.三、解答题(共7小题,满分69分)18.(10分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值.19.(5分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).求抛物线的解析式和直线AD的解析式;过x轴上的点E(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.20.(8分)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.21.(10分)在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.22.(10分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.23.(12分)如图1,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接AD.在线段AD上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P与点D重合时,x的值为0),PB+PE=y.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x与y的几组值,如下表:x0123456y5.24.24.65.97.69.5说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y的最小值(保留一位小数),此时点P在图1中的什么位置.24.(14分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
设CD=1,CF=x,则CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
解得x=,
∴sin∠BED=sin∠CDF=.
故选:A.2、A【解析】
连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【详解】解:连接AM,
∵AB=AC,点M为BC中点,
∴AM⊥CM(三线合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,
又S△AMC=MN•AC=AM•MC,∴MN==.
故选A.【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.3、B【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】添加,根据AAS能证明≌,故A选项不符合题意.B.添加与原条件满足SSA,不能证明≌,故B选项符合题意;C.添加,可得,根据AAS能证明≌,故C选项不符合题意;D.添加,可得,根据AAS能证明≌,故D选项不符合题意,故选B.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、B【解析】
先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5、B【解析】
A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;
B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;
C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;
D选项:两项不是同类项,故不能进行合并.【详解】A选项:a6÷a2=a4,故本选项错误;
B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;
C选项:(-a)2•a3=a5,故本选项错误;
D选项:5a与2b不是同类项,不能合并,故本选项错误;
故选:B.【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.6、D【解析】
A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.7、B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=8,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
故选C.“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.8、D【解析】
分别利用平均数以及方差和中位数的定义分析,进而求出答案.【详解】2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位数不相等,方差相等.故选:D.【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.9、D【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.【详解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选D.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.10、B【解析】
根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】.,此选项不符合题意;.,此选项符合题意;.,此选项不符合题意;.,此选项不符合题意;故选:.【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.二、填空题(共7小题,每小题3分,满分21分)11、【解析】
根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.【详解】∵共有15个方格,其中黑色方格占5个,∴这粒豆子落在黑色方格中的概率是=,故答案为.【点睛】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.12、k>-且k≠1【解析】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4且k≠1.13、【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴∴∴∵PD⊥OA,点M是OP的中点,∴故答案为:【点睛】此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,属于中考常见题型,求出OP的长是解题关键.14、.【解析】试题分析:设正方形的边长为y,EC=x,由题意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化简得y=4x,∴sin∠EAB=.考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义15、1【解析】解:∵DE是AB的垂直平分线,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案为1.点睛:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解答本题的关键.16、4【解析】
连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍.【详解】解:连接OP、OB,∵图形BAP的面积=△AOB的面积+△BOP的面积+扇形OAP的面积,图形BCP的面积=△BOC的面积+扇形OCP的面积−△BOP的面积,又∵点P是半圆弧AC的中点,OA=OC,∴扇形OAP的面积=扇形OCP的面积,△AOB的面积=△BOC的面积,∴两部分面积之差的绝对值是点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.17、【解析】【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标.【详解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2+1-m,所以抛物线的顶点坐标为(-1,1-m),故答案为(-1,1-m).【点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键.三、解答题(共7小题,满分69分)18、(1)AC=;(2).【解析】【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【详解】(1)如图,过点A作AE⊥BC,在Rt△ABE中,tan∠ABC=,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF=,∴DF=,在Rt△BFD中,根据勾股定理得:BD==,∴AD=5﹣=,则.【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.19、(1)y=-x2+2x+3;y=x+1;(2)a的值为-3或.【解析】
(1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F(a-3,-3),代入抛物线解析式,即可得出结果.【详解】解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:解得:b=2,c=3,∴抛物线的解析式为y=-x2+2x+3;当y=0时,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=-1-a=2,∴a=-3;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;综上所述,满足条件的a的值为-3或.【点睛】本题考查抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强.20、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.【解析】
(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系(2)过点B作BE⊥BD,交MN于点E.AD交BC于O,证明,得到,,根据为等腰直角三角形,得到,再根据,即可解出答案.(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.在DA上截取一点H,使得CD=DH=1,则易证,由即可得出答案.【详解】解:(1)如图1中,由题意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案为.(2).证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴为等腰直角三角形,.∵,∴.(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,∴.【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.21、证明见解析.【解析】
连接OE,由OB=OD和AB=AC可得,则OF∥AC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论.【详解】证明:如图,连接,∵,∴,∵,∴,∴,∴,∴∵∴,则,∴,∴,即,在和中,∵,∴,∴∵是的切线,则,∴,∴,则,∴是的切线.【点睛】本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.22、(1)200;(2)见解析;(3)126°;(4)240人.【解析】
(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【点睛】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键23、(1)4.5(2)根据数据画图见解析;(3)函数y的最小值为4.2,线段AD上靠近D点三等分点处.【解析】
(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁省大连市中山区20232024学年九年级上学期期末考试物理化学试题-初中化学
- 银行业务发展策略总结
- 化妆行业营业员岗位总结
- 浙江省杭州市余杭区、萧山区2023-2024学年六年级上学期英语期末试卷
- 《保险经营篇》课件
- 2021年湖北省恩施自治州公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2023年广西壮族自治区梧州市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年安徽省六安市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年四川省遂宁市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2021年山西省晋中市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2024年广西北部湾港集团招聘笔试参考题库含答案解析
- 建设工程项目工程项目三方合署办公管理标准
- 工程造价毕业设计总结3000字(5篇)
- 鼓膜置管方法
- 国家开放大学电大专科《刑法学(1)》题库及答案
- 行业代码大全
- 反电信诈骗ppt-防范电信诈骗的ppt
- 桩基检测的环保措施
- 术前术后健康宣教
- 新东方国际游学报名表
- 数学八年级下册第十七章 小结与复习
评论
0/150
提交评论