版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省鹤壁市重点中学2024届高三第一次调研测试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为()A. B. C. D.2.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是()A. B.C. D.3.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为()A. B. C. D.4.记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围()A. B. C. D.5.已知复数是正实数,则实数的值为()A. B. C. D.6.若(),,则()A.0或2 B.0 C.1或2 D.17.设全集,集合,,则()A. B. C. D.8.函数(或)的图象大致是()A. B. C. D.9.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为()A.3 B. C.6 D.10.已知平面向量,满足,,且,则()A.3 B. C. D.511.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A. B. C. D.12.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的二项展开式中,含项的系数为__________.14.角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是.15.已知函数,若关于的方程恰有四个不同的解,则实数的取值范围是______.16.在二项式的展开式中,的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)己知的内角的对边分别为.设(1)求的值;(2)若,且,求的值.18.(12分)已知函数(为常数)(Ⅰ)当时,求的单调区间;(Ⅱ)若为增函数,求实数的取值范围.19.(12分)已知数列的各项均为正数,为其前n项和,对于任意的满足关系式.(1)求数列的通项公式;(2)设数列的通项公式是,前n项和为,求证:对于任意的正数n,总有.20.(12分)已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若a,且a≠0,证明:函数有局部对称点;(2)若函数在定义域内有局部对称点,求实数c的取值范围;(3)若函数在R上有局部对称点,求实数m的取值范围.21.(12分)如图,在中,点在上,,,.(1)求的值;(2)若,求的长.22.(10分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;②每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若,则,,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值.【详解】由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即为三棱锥,且长方体的长、宽、高分别为,∴此三棱锥的外接球即为长方体的外接球,且球半径为,∴三棱锥外接球表面积为,∴当且仅当,时,三棱锥外接球的表面积取得最小值为.故选B.【点睛】(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题.2、D【解析】
根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.3、C【解析】
设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.【详解】设球的半径为R,根据题意圆柱的表面积为,解得,所以该球的体积为.故选:C【点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.4、D【解析】
做出函数的图象,问题转化为函数的图象在有7个交点,而函数在上有3个交点,则在上有4个不同的交点,数形结合即可求解.【详解】作出函数的图象如图所示,由图可知方程在上有3个不同的实数根,则在上有4个不同的实数根,当直线经过时,;当直线经过时,,可知当时,直线与的图象在上有4个交点,即方程,在上有4个不同的实数根.故选:D.【点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.5、C【解析】
将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为为正实数,所以且,解得.故选:C【点睛】本题考查复数的基本定义,属基础题.6、A【解析】
利用复数的模的运算列方程,解方程求得的值.【详解】由于(),,所以,解得或.故选:A【点睛】本小题主要考查复数模的运算,属于基础题.7、B【解析】
可解出集合,然后进行补集、交集的运算即可.【详解】,,则,因此,.故选:B.【点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.8、A【解析】
确定函数的奇偶性,排除两个选项,再求时的函数值,再排除一个,得正确选项.【详解】分析知,函数(或)为偶函数,所以图象关于轴对称,排除B,C,当时,,排除D,故选:A.【点睛】本题考查由函数解析式选择函数图象,解题时可通过研究函数的性质,如奇偶性、单调性、对称性等,研究特殊的函数的值、函数值的正负,以及函数值的变化趋势,排除错误选项,得正确结论.9、A【解析】
根据焦点到渐近线的距离,可得,然后根据,可得结果.【详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A【点睛】本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.10、B【解析】
先求出,再利用求出,再求.【详解】解:由,所以,,,故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.11、D【解析】
如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.12、C【解析】
因为,,所以根据正弦定理可得,所以,,所以,其中,,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【详解】,由,可得.含项的系数为.故答案为:【点睛】本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.14、【解析】试题分析:由三角函数定义知,又由诱导公式知,所以答案应填:.考点:1、三角函数定义;2、诱导公式.15、【解析】
设,判断为偶函数,考虑x>0时,的解析式和零点个数,利用导数分析函数的单调性,作函数大致图象,即可得到的范围.【详解】设,则在是偶函数,当时,,由得,记,,,故函数在增,而,所以在减,在增,,当时,,当时,,因此的图象为因此实数的取值范围是.【点睛】本题主要考查了函数的零点的个数问题,涉及构造函数,函数的奇偶性,利用导数研究函数单调性,考查了数形结合思想方法,以及化简运算能力和推理能力,属于难题.16、60【解析】
直接利用二项式定理计算得到答案.【详解】二项式的展开式通项为:,取,则的系数为.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由正弦定理将,转化,即,由余弦定理求得,再由平方关系得再求解.(2)由,得,结合再求解.【详解】(1)由正弦定理,得,即,则,而,又,解得,故.(2)因为,则,因为,故,故,解得,故,则.【点睛】本题考查正弦定理、余弦定理、三角形的面积公式,考查运算求解能力以及化归与转化思想,属于中档题.18、(Ⅰ)单调递增区间为,;单调递减区间为;(Ⅱ).【解析】
(Ⅰ)对函数进行求导,利用导数判断函数的单调性即可;(Ⅱ)对函数进行求导,由题意知,为增函数等价于在区间恒成立,利用分离参数法和基本不等式求最值即可求出实数的取值范围.【详解】(Ⅰ)由题意知,函数的定义域为,当时,,令,得,或,所以,随的变化情况如下表:递增递减递增的单调递增区间为,,单调递减区间为.(Ⅱ)由题意得在区间恒成立,即在区间恒成立.,当且仅当,即时等号成立.所以,所以的取值范围是.【点睛】本题考查利用导数求函数的单调区间、利用分离参数法和基本不等式求最值求参数的取值范围;考查运算求解能力和逻辑推理能力;利用导数把函数单调性问题转化为不等式恒成立问题是求解本题的关键;属于中档题、常考题型.19、(1)(2)证明见解析【解析】
(1)根据公式得到,计算得到答案.(2),根据裂项求和法计算得到,得到证明.【详解】(1)由已知得时,,故.故数列为等比数列,且公比.又当时,,..(2)..【点睛】本题考查了数列通项公式和证明数列不等式,意在考查学生对于数列公式方法的综合应用.20、(1)见解析(2)(3)【解析】
(1)若函数有局部对称点,则,即有解,即可求证;(2)由题可得在内有解,即方程在区间上有解,则,设,利用导函数求得的范围,即可求得的范围;(3)由题可得在上有解,即在上有解,设,则可变形为方程在区间内有解,进而求解即可.【详解】(1)证明:由得,代入得,则得到关于x的方程,由于且,所以,所以函数必有局部对称点(2)解:由题,因为函数在定义域内有局部对称点所以在内有解,即方程在区间上有解,所以,设,则,所以令,则,当时,,故函数在区间上单调递减,当时,,故函数在区间上单调递增,所以,因为,,所以,所以,所以(3)解:由题,,由于,所以,所以(*)在R上有解,令,则,所以方程(*)变为在区间内有解,需满足条件:,即,得【点睛】本题考查函数的局部对称点的理解,利用导函数研究函数的最值问题,考查转化思想与运算能力.21、(1);(2).【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 5年级下册第26课教学课件教学
- 人教版九年级化学第二单元我们周围的空气实验活动1氧气的实验室制取与性质课件
- 2024年度钢管市场调查与竞争对手分析承包合同
- 技术授权合同范本 2篇
- 小学一年级家长培训
- 淋巴瘤主要护理问题
- 《物料管理》课件
- 2024年度技术服务合同:云计算服务的提供与维护3篇
- 仁爱版七年级上册英语全册教案(供参考)
- 2024版医疗信息技术服务合同
- 审计专业职业生涯规划总结报告
- 水稻碳足迹评价技术指南
- 工会跳棋活动方案
- 新高考英语读后续写技巧与训练:助人类20篇
- 规范开展学术活动管理制度
- 建设工程监理职业生涯规划
- 冻酸奶市场洞察报告
- 胎儿肛门闭锁个案护理
- 成都YC公司创业计划书
- 2022年全国统一高考化学试卷和答案解析(全国甲卷)
- 企业退税申请报告范文
评论
0/150
提交评论