版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省徐州市九里中学高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图所示,不可能表示函数的是(
)参考答案:D略2.设=(﹣1,2),=(1,﹣1),=(3,﹣2),且=p+q,则实数p、q的值分别为()A.p=4,q=1B.p=1,q=﹣4C.p=0,q=1D.p=1,q=4参考答案:D【考点】平面向量的坐标运算;相等向量与相反向量.【分析】利用向量的线性坐标运算法则和向量相等即可得出.【解答】解:∵=(﹣p+q,2p﹣q),且=p+q,.∴,解得.故选D.3.已知数列{an}是一个递增数列,满足,,,则(
)A.4 B.6 C.7 D.8参考答案:B【分析】代入n=1,求得=1或=2或=3,由数列是一个递增数列,满足分类讨论求得结果.【详解】当n=1时,则=2,因为,可得=1或=2或=3,当=1时,代入得舍去;当=2时,代入得,即=2,,,又是一个递增数列,且满足当=3时,代入得不满足数列是一个递增数列,舍去.故选B.【点睛】本题考查数列递推式,考查学生的计算能力与逻辑推理能力,属于中档题.4.若,则,,,的大小关系为(
)A.
B.C.
D.参考答案:D5.点P(0,1)到直线的距离是A.4
B.3
C.2
D.参考答案:C略6.如图,M是正方体的棱的中点,给出命题①过M点有且只有一条直线与直线、都相交;②过M点有且只有一条直线与直线、都垂直;③过M点有且只有一个平面与直线、都相交;④过M点有且只有一个平面与直线、都平行.其中真命题是(
)
A.②③④
B.①③④
C.①②④
D.①②③参考答案:C7.已知点,点满足线性约束条件O为坐标原点,那么的最小值是A.11 B.0 C.-1 D.-5参考答案:D【详解】点满足线性约束条件∵令目标函数画出可行域如图所示,联立方程解得在点处取得最小值:故选D【点睛】此题主要考查简单的线性规划问题以及向量的内积的问题,解决此题的关键是能够找出目标函数.8.(5分)方程组的解集是() A. {(5,4)} B. {(﹣5,﹣4)} C. {(﹣5,4)} D. {(5,﹣4)}参考答案:D考点: 直线与圆锥曲线的关系.专题: 计算题.分析: 把直线方程代入双曲线方程消去y后求得x,代入直线方程求得y.解答: 把直线方程代入双曲线方程得x2﹣(x﹣1)2=9,整理得2x=10,x=5x=5代入直线方程求得y═﹣5+1=﹣4故方程组的解集为{5,﹣4},故选D点评: 本题主要考查了直线与双曲线的关系.涉及交点问题一般是把直线方程与圆锥曲线的方程联立,通过解方程组求解.9.正三棱锥的底面边长为6,高为,则这个三棱锥的全面积为(
)(A)9
(B)18
(C)9(+)(D)参考答案:C略10.设集合,,则(
)
A.
B.
C.
D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,若,则
参考答案:-312.已知f(x5)=lgx,则f(10)=_______。参考答案:略13.在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p﹣2=0有两个负根的概率为
.参考答案:【考点】几何概型.【分析】由一元二次方程根的分布可得p的不等式组,解不等式组,由长度之比可得所求概率.【解答】解:方程x2+2px+3p﹣2=0有两个负根等价于,解关于p的不等式组可得<p≤1或p≥2,∴所求概率P==故答案为:14.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则++++的值为
.参考答案:30【考点】抽象函数及其应用.【分析】题中条件:f(p+q)=f(p)f(q),利用赋值法得到=2和f(2n)=f2(n),后化简所求式子即得.【解答】解:由f(p+q)=f(p)f(q),令p=q=n,得f2(n)=f(2n).原式=+++++=2f(1)++++=10f(1)=30,故答案为:3015.若函数的定义域为,且存在常数,对任意,有,则称为函数。给出下列函数:①,②,③,④是定义在上的奇函数,且满足对一切实数均有,⑤,其中是函数的有____________________。参考答案:③④16.已知向量,满足且则与的夹角为
参考答案:略17.给出下列命题①函数的最小正周期为,图象的一条对称轴为②若向量与共线,则③两个单位向量与的夹角为,当时,向量与向量垂直④函数的一个对称中心为,且在区间上单调递减其中结论正确的编号为①
(把你认为正确的结论编号都填上)
参考答案:③①三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.定义:对于函数,若在定义域内存在实数x,满足,则称为“局部奇函数”.(Ⅰ)已知二次函数,试判断是否为定义域R上的“局部奇函数”?若是,求出所有满足的x的值;若不是,请说明事由.(Ⅱ)若是定义在区间上的“局部奇函数”,求实数m的取值范围.(Ⅲ)若为定义域上的“局部奇函数”,求实数m的取值范围.参考答案:见解析.解:(Ⅰ)当,方程即,,所以为“局部奇函数”.(Ⅱ)法一:当时,可化为,∵有定义域为,所以方程在有解,令,则,∵在上为减函数,在上为增函数,∴当时,,即,∴.法二:当时,可化为,令,则关于的二次方程在上有解即可,保证为“局部奇函数”,设.①当方程在上只有一解时,须满足在或,解得或舍去,因为此时方程在区间有两解,不符合这种情况.②当方程在上有两个不相等实根时,须满足,解得,∴.(Ⅲ)当为定义域上的“局部奇函数”时,,可化为,令,则,,从而在有解,即可保证为“局部奇函数”令,则①时,在有解,即,解得.②当,在有解等价于,,解得.综上,,∴的取值范围是.19.求证函数在(1,)上是增函数。参考答案:证明:任取,∈(1,+∞)且<
则f()-f()=(-)+
=(-)<0所以函数在是增函数.略20.已知函数且f(4)=.(1)求α的值;(2)判断f(x)在(0,+∞)上的单调性,并证明.参考答案:略21.如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.参考答案:【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可.【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA?平面DEF,DE?平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE?平面BDE,∴平面BDE⊥平面ABC.22.(本小题满分16分)如图,圆:.(Ⅰ)若圆与轴相切,求圆的方程;(Ⅱ)已知,圆C与轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点.问:是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑施工合同执行细则
- 劳务派遣补充合同范本2024年
- 2024专业版代理操盘合同
- 2024装修协议合同范本
- 2024设备转让合同范本设备购买合同范本2
- 南京银行学生贷款合同
- 城市轨道工程施工借款合同
- 2024苏州市全日制劳动合同
- 2024小卖部承包合同
- 2024自费养老合同范文
- 2024年二手物品寄售合同
- 2023年辽阳宏伟区龙鼎山社区卫生服务中心招聘工作人员考试真题
- 三年级数学(上)计算题专项练习附答案集锦
- 高一期中家长会班级基本情况打算和措施模板
- 历史期中复习课件七年级上册复习课件(部编版2024)
- 专题7.2 空间点、直线、平面之间的位置关系(举一反三)(新高考专用)(学生版) 2025年高考数学一轮复习专练(新高考专用)
- 7.2.2 先天性行为和学习行为练习 同步练习
- 2024-2025学年八年级物理上册 4.2光的反射说课稿(新版)新人教版
- 《现代管理原理》章节测试参考答案
- 2024秋期国家开放大学专科《高等数学基础》一平台在线形考(形考任务一至四)试题及答案
- TPO26听力题目及答案
评论
0/150
提交评论