北京海淀区一零一中学2024届高考仿真卷数学试题含解析_第1页
北京海淀区一零一中学2024届高考仿真卷数学试题含解析_第2页
北京海淀区一零一中学2024届高考仿真卷数学试题含解析_第3页
北京海淀区一零一中学2024届高考仿真卷数学试题含解析_第4页
北京海淀区一零一中学2024届高考仿真卷数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京海淀区一零一中学2024届高考仿真卷数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列满足:,,,为其前n项和,则()A.0 B.1 C.3 D.42.如图所示,正方体的棱,的中点分别为,,则直线与平面所成角的正弦值为()A. B. C. D.3.已知正方体的棱长为,,,分别是棱,,的中点,给出下列四个命题:①;②直线与直线所成角为;③过,,三点的平面截该正方体所得的截面为六边形;④三棱锥的体积为.其中,正确命题的个数为()A. B. C. D.4.设,随机变量的分布列是01则当在内增大时,()A.减小,减小 B.减小,增大C.增大,减小 D.增大,增大5.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为()A. B. C. D.6.已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的()条件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要7.已知函数,,的零点分别为,,,则()A. B.C. D.8.设,均为非零的平面向量,则“存在负数,使得”是“”的A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件9.已知是虚数单位,若,则()A. B.2 C. D.1010.若函数的图象经过点,则函数图象的一条对称轴的方程可以为()A. B. C. D.11.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C. D.212.已知实数x,y满足约束条件,若的最大值为2,则实数k的值为()A.1 B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,常数项为______;系数最大的项是______.14.已知向量,,,若,则______.15.曲线在点处的切线方程为______.16.如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.18.(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在上恒成立,求实数的取值范围.19.(12分)已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为(1)求椭圆的方程;(2)点为内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.20.(12分)△的内角的对边分别为,且.(1)求角的大小(2)若,△的面积,求△的周长.21.(12分)以平面直角坐标系的原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,已知曲线,曲线(为参数),求曲线交点的直角坐标.22.(10分)已知函数.(1)若,,求函数的单调区间;(2)时,若对一切恒成立,求a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

用去换中的n,得,相加即可找到数列的周期,再利用计算.【详解】由已知,①,所以②,①+②,得,从而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.2、C【解析】

以D为原点,DA,DC,DD1分别为轴,建立空间直角坐标系,由向量法求出直线EF与平面AA1D1D所成角的正弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1的棱长为2,则,,,取平面的法向量为,设直线EF与平面AA1D1D所成角为θ,则sinθ=|,直线与平面所成角的正弦值为.故选C.【点睛】本题考查了线面角的正弦值的求法,也考查数形结合思想和向量法的应用,属于中档题.3、C【解析】

画出几何体的图形,然后转化判断四个命题的真假即可.【详解】如图;连接相关点的线段,为的中点,连接,因为是中点,可知,,可知平面,即可证明,所以①正确;直线与直线所成角就是直线与直线所成角为;正确;过,,三点的平面截该正方体所得的截面为五边形;如图:是五边形.所以③不正确;如图:三棱锥的体积为:由条件易知F是GM中点,所以,而,.所以三棱锥的体积为,④正确;故选:.【点睛】本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题.4、C【解析】

,,判断其在内的单调性即可.【详解】解:根据题意在内递增,,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C.【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题.5、B【解析】

通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.【详解】解:由题意可知,抛物线的准线方程为,,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,.故选:.【点睛】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.6、B【解析】

根据充分必要条件的概念进行判断.【详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.7、C【解析】

转化函数,,的零点为与,,的交点,数形结合,即得解.【详解】函数,,的零点,即为与,,的交点,作出与,,的图象,如图所示,可知故选:C【点睛】本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题.8、B【解析】

根据充分条件、必要条件的定义进行分析、判断后可得结论.【详解】因为,均为非零的平面向量,存在负数,使得,所以向量,共线且方向相反,所以,即充分性成立;反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立.所以“存在负数,使得”是“”的充分不必要条件.故选B.【点睛】判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确.9、C【解析】

根据复数模的性质计算即可.【详解】因为,所以,,故选:C【点睛】本题主要考查了复数模的定义及复数模的性质,属于容易题.10、B【解析】

由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.【详解】由题可知.所以令,得令,得故选:B【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.11、B【解析】

首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.12、B【解析】

画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.【详解】可行域如图中阴影部分所示,,,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项.【详解】的展开式的通项为,令,得,所以,展开式中的常数项为;令,令,即,解得,,,因此,展开式中系数最大的项为.故答案为:;.【点睛】本题考查二项展开式中常数项的求解,同时也考查了系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.14、-1【解析】

由向量垂直得向量的数量积为0,根据数量积的坐标运算可得结论.【详解】由已知,∵,∴,.故答案为:-1.【点睛】本题考查向量垂直的坐标运算.掌握向量垂直与数量积的关系是解题关键.15、【解析】

对函数求导,得出在处的一阶导数值,即得出所求切线的斜率,再运用直线的点斜式求出切线的方程.【详解】令,,所以,又,所求切线方程为,即.故答案为:.【点睛】本题考查运用函数的导函数求函数在切点处的切线方程,关键在于求出在切点处的导函数值就是切线的斜率,属于基础题.16、.【解析】.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极坐标方程为,点的极坐标为(2)【解析】

(1)利用极坐标方程、普通方程、参数方程间的互化公式即可;(2)只需算出A、B两点的极坐标,利用计算即可.【详解】(1)曲线C:(为参数,),将代入,解得,即曲线的极坐标方程为,点的极坐标为.(2)由(1),得点的极坐标为,由直线过原点且倾斜角为,知点的极坐标为,.【点睛】本题考查极坐标方程、普通方程、参数方程间的互化以及利用极径求三角形面积,考查学生的运算能力,是一道基础题.18、(1)或;(2).【解析】

(1)利用绝对值的几何意义,将不等式,转化为不等式或或求解.(2)根据-2在R上恒成立,由绝对值三角不等式求得的最小值即可.【详解】(1)原不等式等价于或或,解得:或,∴不等式的解集为或.(2)因为-2在R上恒成立,而,所以,解得,所以实数的取值范围是.【点睛】本题主要考查绝对值不等式的解法和不等式恒成立问题,还考查了运算求解的能力,属于中档题.19、(1);(2)或【解析】

(1)由椭圆的定义可知,焦点三角形的周长为,从而求出.写出直线的方程,与椭圆方程联立,根据交点横坐标为,求出和,从而写出椭圆的方程;(2)设出P、Q两点坐标,由可知点为的重心,根据重心坐标公式可将点用P、Q两点坐标来表示.由点在圆O上,知点M的坐标满足圆O的方程,得式.为直线l与椭圆的两个交点,用韦达定理表示,将其代入方程,再利用求得的范围,最终求出实数的取值范围.【详解】解:(1)由题意知.,直线的方程为∵直线与椭圆的另一个交点的横坐标为解得或(舍去),∴椭圆的方程为(2)设.∴点为的重心,∵点在圆上,由得,代入方程,得,即由得解得.或【点睛】本题考查了椭圆的焦点三角形的周长,标准方程的求解,直线与椭圆的位置关系,其中重心坐标公式、韦达定理的应用是关键.考查了学生的运算能力,属于较难的题.20、(I);(II).【解析】

试题分析:(I)由已知可得;(II)依题意得:的周长为.试题解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依题意得:∴,∴,∴,∴,∴的周长为.考点:1、解三角形;2、三角恒等变换.21、【解析】

利用极坐标方程与普通方程、参数方程间的互化公式化简即可.【详解】因为,所以,所以曲线的直角坐标方程为.由,得,所以曲线的普通方程为.由,得,所以(舍),所以,所以曲线的交点坐标为.【点睛】本题考查极坐标方程与普通方程,参数方程与普通方程间的互化,考查学生的计算能力,是一道容易题.22、(1)单调递减区间为,单调递增区间为;(2)【解析】

(1)求导,根据导数与函数单调性关系即可求出.(2)解法一:分类讨论:当时,观察式子可得恒成立;当时,利用导数判断函数为单调递增,可知;当时,令,由,,根据零点存在性定理可得,进而可得在上,单调递减,即不满足题意;解法二:通过分离参数可知条件等价于恒成立,进而记,问题转化为求在上的最小值问题,通过二次求导,结合洛比达法则计算可得结论.【详解】(1)当,,,,令,解得,当时,,当时,,在上单调递减,在上单调递增.(2)解法一:当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论