2024年初三下册数学专项二次函数全章复习与巩固-巩固练习(基础)_第1页
2024年初三下册数学专项二次函数全章复习与巩固-巩固练习(基础)_第2页
2024年初三下册数学专项二次函数全章复习与巩固-巩固练习(基础)_第3页
2024年初三下册数学专项二次函数全章复习与巩固-巩固练习(基础)_第4页
2024年初三下册数学专项二次函数全章复习与巩固-巩固练习(基础)_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年初三下册数学专项《二次函数》全章复习与巩固—巩固练习(基础)【巩固练习】一、选择题

1.将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是().A.B.C.D.2.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为().3.(2016•永州)抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣24.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是()A.B.C.D.5.(2014•巴中)已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是() A. abc<0 B. ﹣3a+c<0 C. b2﹣4ac≥0 D. 将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c6.已知点(,),(,)(两点不重合)均在抛物线上,则下列说法正确的是().A.若,则B.若,则C.若,则D.若,则7.在反比例函数中,当时,y随x的增大而减小,则二次函数的图象大致是图中的().8.已知二次函数(其中,,),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x轴的交点至少有一个在y轴的右侧.以上说法正确的有().A.0个B.1个C.2个D.3个二、填空题9.(2014•长春一模)如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是.10.抛物线的图象如图所示,则此抛物线的解析式为________.11.抛物线的顶点为C,已知y=-kx+3的图象经过点C,则这个一次函数图象与两坐标轴所围成的三角形面积为________.12.已知二次函数的部分图象如图所示,则关于x的一元二次方程的解为________.第10题第12题第13题13.如图所示的抛物线是二次函数的图象,那么a的值是________.14.烟花厂为扬州“4·18”烟花三月经贸旅游节特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为________.15.已知抛物线经过点A(-1,4),B(5,4),C(3,-6),则该抛物线上纵坐标为-6的另一个点的坐标是________.16.若二次函数的图象过A(-1,y1)、B(2,y2)、C(,y3)三点,则y1、y2、y3大小关系是.三、解答题17.(2016•河南)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.18.如图所示,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上、下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上、下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?19.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?20.王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用了30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量)y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?(注:学习收益总量=解题的学习收益量+回顾反思的学习收益量)【答案与解析】一、选择题

1.【答案】A;【解析】向右平移1个单位后,顶点为(1,0),再向上平移2个单位后,顶点为(1,2),开口方向及大小不变,所以,即.2.【答案】D;【解析】由上图可知,,,∴..,∴反比例函数图象在第二、四象限内,一次函数图象经过第一、二、四象限,因此选D.3.【答案】A.【解析】∵抛物线y=x2+2x+m﹣1与x轴有两个交点,∴△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故选A.4.【答案】D;【解析】由图象知,抛物线与x轴两交点是(-1,0),(2,0),又开口方向向下,所以,抛物线与y轴交点纵坐标大于1.显然A、B、C不合题意,故选D.5.【答案】B;【解析】A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,∴向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选:B.6.【答案】D;【解析】画出的图象,对称轴为,若,则;若,则;若,则;若,则.7.【答案】A;【解析】因为,当时,y随x增大而减小,所以a>0,因此抛物线开口向上,且与x轴相交于(0,0)和(1,0).8.【答案】C;【解析】∵,,∴抛物线开口向上,,因此抛物线顶点在y轴的左侧,不可能在第四象限;又,,抛物线与x轴交于原点的两侧,因此①③是正确的.二、填空题9.【答案】y=﹣x2+2x+3;【解析】∵抛物线y=﹣x2+bx+c的对称轴为直线x=1,∴=1,解得b=2,∵与x轴的一个交点为(3,0),∴0=﹣9+6+c,解得c=3,故函数解析式为y=﹣x2+2x+3.10.【答案】;【解析】由题意和图象知抛物线与x轴两交点为(3,0)、(-1,0),∴抛物线解析式为,即.11.【答案】1;【解析】,,与坐标轴交点为(0,3),.12.【答案】x1=3或x2=-1;【解析】由二次函数部分图象知,与x轴的一个交点为(3,0).代入方程得m=3,解方程得x1=3或x2=-1.13.【答案】-1;【解析】因为抛物线过原点,所以,即,又抛物线开口向下,所以a=-1.14.【答案】4s;【解析】.15.【答案】(1,-6);【解析】常规解法是先求出关系式,然后再求点的坐标,但此方法繁琐耗时易出错,仔细分析就会注意到:A、B两点纵坐标相同,它们关于抛物线对称轴对称,由A(-1,4),B(5,4)得,对称轴,而抛物线上纵坐标为-6的一点是(3,-6),所以它关于x=2的对称点是(1,-6).故抛物线上纵坐标为-6的另一点的坐标是(1,-6).16.【答案】y1>y3>y2.【解析】因为抛物线的对称轴为.而A、B在对称轴左侧,且y随x的增大而减小,∵-1<2,∴y1>y2,又C在对称轴右侧,且A、B、C三点到对称轴的距离分别为2,1,,由对称性可知:y1>y3>y2.三、解答题17.【答案与解析】解:(1)把x=﹣2代入y=x2﹣2|x|得y=0,即m=0,故答案为:0;(2)如图所示;(3)由函数图象知:①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②如图,∵y=x2﹣2|x|的图象与直线y=2有两个交点,∴x2﹣2|x|=2有2个实数根;③由函数图象知:∵关于x的方程x2﹣2|x|=a有4个实数根,∴a的取值范围是﹣1<a<0,故答案为:3,3,2,﹣1<a<0.18.【答案与解析】(1)横向甬道的面积为(m2).(2)依题意:,整理得,解得x1=5,x2=150(不合题意,舍去).∴甬道的宽为5米.(3)设建花坛的总费用为y万元,则.∴y=0.04x2-0.5x+240.当时,y的值最小.∵根据设计的要求,甬道的宽不能超过6m.∴当x=6m时,总费用最少,为0.04×62-0.5×6+240=238.44(万元).19.【答案与解析】(1)由题意可知,当x≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以,即100≤x≤250时,购买一个需5000-10(x-100)元.故y1=6000x-10x2;当x>250时,购买一个需3500元.故y1=3500x.所以y2=5000×80%x=4000x.(2)当0<x≤100时,y1=5000x≤500000<1400000;当100<x≤250时,y1=6000x-10x2=-10(x-300)2+900000<1400000;所以,由3500x=1400000,得x=400.由4000x=1400000,得x=350.故选择甲商家,最多能购买400个路灯.20.【答案与解析】(1)设y=kx,把(2,4)代入,得k=2,所以y=2x,自变量x的取值范围是:0≤x≤30.(2)当0≤x<5时,设y=a(x-5)2+25,把(0,0)代入,得25a+25=0,a=-1,所以.当5≤x≤15时,y=25.即(3)设王亮用于回顾反思的时间为x(0≤x<5)分钟,学习收益总量为Z,则他用于解题的时间为(30-x)分钟.当0≤x<5时,.所以当x=4时,.当5≤x≤15时,Z=25+2(30-x)=-2x+85.因为Z随x的增大而减小,所以当x=5时,.综合所述,当x=4时,,此时30-x=26.即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时.学习收益总量最大.《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;

2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;

3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;

4.会利用二次函数的图象求一元二次方程的近似解.

【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.

要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质

1.二次函数由特殊到一般,可分为以下几种形式:

①;②;③;④,

其中;⑤.(以上式子a≠0)

几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时

开口向上

当时

开口向下(轴)(0,0)(轴)(0,)(,0)(,)()2.抛物线的三要素:

开口方向、对称轴、顶点.

(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.

(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.

3.抛物线中,的作用:

(1)决定开口方向及开口大小,这与中的完全一样.

(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,

故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.

(3)的大小决定抛物线与轴交点的位置.

当时,,∴抛物线与轴有且只有一个交点(0,):

①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.

以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.

4.用待定系数法求二次函数的解析式:

(1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.

(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.

(可以看成的图象平移后所对应的函数.)

(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:

(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.

要点三、二次函数与一元二次方程的关系

函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.

(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;

(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;

(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.

通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:

的图象

的解方程有两个不等实数解方程有两个相等实数解

方程没有实数解要点诠释:二次函数图象与x轴的交点的个数由的值来确定.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;

(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;

(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.

要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.

利用二次函数解决实际问题的一般步骤是:

(1)建立适当的平面直角坐标系;

(2)把实际问题中的一些数据与点的坐标联系起来;

(3)用待定系数法求出抛物线的关系式;

(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.

【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点,且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为________.【答案】或.【解析】正确找出图象与x轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0).因此所求抛物线的解析式有两种.设二次函数解析式为.则有,或解之,或因此所求二次函数解析式为或.【点评]此题容易出错漏解的错误.举一反三:【高清课程名称:二次函数复习高清ID号:357019关联的位置名称(播放点名称):(1)-(2)问精讲】【变式】已知:抛物线y=x2+bx+c的对称轴为x=1,交x轴于点A、B(A在B的左侧),且AB=4,交y轴于点C.求此抛物线的函数解析式及其顶点M的坐标.【答案】∵对称轴x=1,且AB=4∴抛物线与x轴的交点为:A(-1,0),B(3,0)∴y=x2-2x-3为所求,∵x=1时y=-4∴M(1,-4)∵对称轴x=1,且AB=4∴抛物线与x轴的交点为:A(-1,0),B(3,0)∴y=x2-2x-3为所求,∵x=1时y=-4,∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.二次函数的图象如图1所示,反比例函数与正比例函数y=(b+c)x在同一坐标系中的大致图象可能是().【答案】B;【解析】由的图象开口向上得a>0,又,∴b<0.由抛物线与y轴负半轴相交得c<0.∵a>0,∴的图象在第一、三象限.∵b+c<0,∴y=(b+c)x的图象在第二、四象限.同时满足和图象的只有B.【点评】由图1得到a、b、c的符号及其相互关系,去判断选项的正误.类型三、数形结合3.(2015•陕西模拟)已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C.则:①b=﹣2;②该二次函数图象与y轴交于负半轴;③存在这样一个a,使得M、A、C三点在同一条直线上;④若a=1,则OA•OB=OC2.以上说法正确的有()A.①②③④ B.②③④ C.①②④ D.①②③【思路点拨】①二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),因而将M、N两点坐标代入即可消去a、c解得b值.②根据图象的特点及与直线MN比较,可知当﹣1<x<1时,二次函数图象在直线MN的下方.③同②理.④当y=0时利用根与系数的关系,可得到OA•OB的值,当x=0时,可得到OC的值.通过c建立等量关系求证.【答案】C;【解析】①∵二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),∴,解得b=﹣2.故该选项正确.②方法一:∵二次函数y=ax2+bx+c,a>0∴该二次函数图象开口向上∵点M(﹣1,2)和点N(1,﹣2),∴直线MN的解析式为y﹣2=,即y=﹣2x,根据抛物线的图象的特点必然是当﹣1<x<1时,二次函数图象在y=﹣2x的下方,∴该二次函数图象与y轴交于负半轴;方法二:由①可得b=﹣2,a+c=0,即c=﹣a<0,所以二次函数图象与y轴交于负半轴.故该选项正确.③根据抛物线图象的特点,M、A、C三点不可能在同一条直线上.故该选项错误.④当a=1时,c=﹣1,∴该抛物线的解析式为y=x2﹣2x﹣1当y=0时,0=x2﹣2x+c,利用根与系数的关系可得x1•x2=c,即OA•OB=|c|,当x=0时,y=c,即OC=|c|=1=OC2,∴若a=1,则OA•OB=OC2,故该选项正确.总上所述①②④正确.故选C.【点评】本题是二次函数的综合题型,其中涉及到的知识点较多,熟练掌握所学函数的图象性质及特点对于解题很重要;同时也要灵活应对知识点彼此之间的联系.类型四、函数与方程4.(2016•台湾)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B. C. D.【思路点拨】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【答案】D.【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.【点评】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.举一反三:【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是()

A.B.

C.D.

【答案】二次函数的图象与x轴无交点,则说明y=0时,方程无解,即.又图象永远在x轴下方,则.答案:B

【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是()

A.1B.2C.0D.不能确定

【答案】当y=0时,,

即二次函数的零点个数是2.

故选B.类型五、分类讨论5.已知点A(1,1)在二次函数的图象上.(1)用含a的代数式表示b;(2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标.【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b2-4ac=0求出a.【答案与解析】(1)因为点A(1,1)在二次函数的图象上,所以1=1-2a+b,所以b=2a.(2)根据题意,方程有两个相等的实数根,所以,解得a=0或a=2.当a=0时,y=x2,这个二次函数的图象的顶点坐标是(0,0).当a=2时,,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数的图象与x轴只有一个交点时,方程有两个相等的实数根,所以.类型六、二次函数与实际问题6.(2015•黄陂区校级模拟)进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x元(x为正整数),每星期的利润为y元.(1)求y与x的函数关系式并写出自变量x的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由.(3)直接写出售价为多少时,每星期的利润不低于5000元?【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x,销售量=500+100x,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润;(3)设当y=5000时x有两个解,可推出0≤x≤5时,y≥5000.【答案与解析】解:(1)依题意,得y=(50﹣40﹣x)•(500+100x)=﹣100x2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x2+500x+5000=﹣100(x﹣)+5625,∵5600<5625,∴5600不是最大利润.(3)当y=5000时,y=﹣100x2+500x+5000=5000,解得x1=0,x2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.《二次函数》全章复习与巩固—知识讲解(提高)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;

2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;

3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;

4.会利用二次函数的图象求一元二次方程的近似解.

【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.

要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质

1.二次函数由特殊到一般,可分为以下几种形式:

①;②;③;④,

其中;⑤.(以上式子a≠0)

几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时

开口向上

当时

开口向下(轴)(0,0)(轴)(0,)(,0)(,)()2.抛物线的三要素:

开口方向、对称轴、顶点.

(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.

(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.

3.抛物线中,的作用:

(1)决定开口方向及开口大小,这与中的完全一样.

(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,

故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.

(3)的大小决定抛物线与轴交点的位置.

当时,,∴抛物线与轴有且只有一个交点(0,):

①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.

以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.

4.用待定系数法求二次函数的解析式:

(1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.

(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.

(可以看成的图象平移后所对应的函数.)

(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:

(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.

要点三、二次函数与一元二次方程的关系

函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.

(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;

(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;

(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.

通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:

的图象

的解方程有两个不等实数解方程有两个相等实数解

方程没有实数解要点诠释:二次函数图象与x轴的交点的个数由的值来确定.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;

(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;

(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.

要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.

利用二次函数解决实际问题的一般步骤是:

(1)建立适当的平面直角坐标系;

(2)把实际问题中的一些数据与点的坐标联系起来;

(3)用待定系数法求出抛物线的关系式;

(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.

【典型例题】类型一、求二次函数的解析式1.已知抛物线的顶点是(3,-2),且在x轴上截得的线段长为6,求抛物线的解析式.【思路点拨】已知抛物线的顶点是(3,-2),可设抛物线解析式为顶点式,即,也就是,再由在x轴上截得的线段长为6建立方程求出a.也可根据抛物线的对称轴是直线x=3,在x轴上截得的线段长为6,则与x轴的交点为(0,0)和(6,0),因此可设y=a(x-0)·(x-6).【答案与解析】解法一:∵抛物线的顶点是(3,-2),且与x轴有交点,∴设解析式为y=a(x-3)2-2(a>0),即,设抛物线与x轴两交点分别为(x1,0),(x2,0).则,解得.∴抛物线的解析式为,即.解法二:∵抛物线的顶点为(3,-2),∴设抛物线解析式为.∵对称轴为直线x=3,在x轴上截得的线段长为6,∴抛物线与x轴的交点为(0,0),(6,0).把(0,0)代入关系式,得0=a(0-3)2-2,解得,∴抛物线的解析式为,即.解法三:求出抛物线与x轴的两个交点的坐标(0,0),(6,0)设抛物线解析式为y=a(x-0)(x-6),把(3,-2)代入得,解得.∴抛物线的解析式为,即.【点评】求抛物线解析式时,根据题目条件,恰当选择关系式,可使问题变得简单.举一反三:【高清课程名称:二次函数复习高清ID号:357019关联的位置名称(播放点名称):练习题精讲】【变式】已知抛物线(m是常数).(1)求抛物线的顶点坐标;(2)若,且抛物线与轴交于整数点,求此抛物线的解析式.【答案】(1)依题意,得,∴,∴抛物线的顶点坐标为.(2)∵抛物线与轴交于整数点,∴的根是整数.∴.∵,∴是整数.∴是完全平方数.∵,∴,∴取1,4,9,.当时,;当时,;当时,.∴的值为2或或.∴抛物线的解析式为或或.类型二、根据二次函数图象及性质判断代数式的符号2.(2016•鄂州)如图,二次函数y=ax2+bx+c=0(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为﹣其中正确的结论个数有()A.1个 B.2个 C.3个 D.4个【思路点拨】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y<0,可判断②;由OA=OC,且OA<1,可判断③;把﹣代入方程整理可得ac2﹣bc+c=0,结合③可判断④;从而可得出答案.【答案】C;【解析】解:由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴方程为x=2,所以﹣>0,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>,故②错误;由图象可知OA<1,∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac﹣b+1=0,两边同时乘c可得ac2﹣bc+c=0,即方程有一个根为x=﹣c,由②可知﹣c=OA,而当x=OA是方程的根,∴x=﹣c是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C.【点评】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.类型三、数形结合3.(2015•黔东南州)如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标;(2)由图象写出满足y1<y2的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.【答案与解析】解:(1)将A点坐标代入y1,得﹣16+13+c=0.解得c=3,二次函数y1的解析式为y=﹣x2+x+3,B点坐标为(0,3);(2)由图象得直线在抛物线上方的部分,是x<0或x>4,∴x<0或x>4时,y1<y2;(3)直线AB的解析式为y=﹣x+3,AB的中点为(2,)AB的垂直平分线为y=x﹣当x=0时,y=﹣,P1(0,﹣),当y=0时,x=,P2(,0),综上所述:P1(0,﹣),P2(,0),使得△ABP是以AB为底边的等腰三角形.【点评】本题考察了二次函数综合题,(1)利用待定系数法求函数解析式;(2)利用函数与不等式的关系求不等式的解集;(3)利用线段垂直平分线的性质,利用直线AB得出AB的垂直平分线是解题关键.类型四、函数与方程4.(2015•本溪模拟)某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≧60)元,销售量为y套.(1)求出y与x的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?【答案与解析】解:(1)销售单价为x元,则销售量减少×20,故销售量为y=240﹣×20=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得x1=70,x2=50(不合题意舍去),故当销售价为70元时,月销售额为14000元;(3)设一个月内获得的利润为w元,根据题意得:w=(x﹣40)(﹣4x+480)=﹣4x2+640x﹣19200=﹣4(x﹣80)2+6400.当x=80时,w的最大值为6400.故当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.【点评】本题考查了函数模型的选择与应用,考查了数学建模思想方法,关键是对题意要正确理解.举一反三:【变式1】抛物线与直线只有一个公共点,则b=________.

【答案】由题意得

把②代入①得.

∵抛物线与直线只有一个公共点,

∴方程必有两个相等的实数根,

∴,∴.

【变式2】二次函数的图象如图所示,根据图象解答下列问题:

(1)写出方程的两个根;

(2)写出不等式的解集;

(3)写出y随x的增大而减小的自变量x的取值范围;

(4)若方程有两个不相等的实数根,求k的取值范围.

【答案】(1)

(2).

(3).

(4)方法1:方程的解,

即为方程组中x的解也就是抛物线与直线的交点的横坐标,由图象可看出,

当时,直线与抛物线有两个交点,∴.

方法2:∵二次函数的图象过(1,0),(3,0),(2,2)三点,

∴∴

∴,即,

∴.

∵方程有两个不相等的实数根,∴,∴.

类型五、分类讨论5.若函数,则当函数值y=8时,自变量x的值是().A.B.4C.或4D.4或【思路点拨】此题函数是以分段函数的形式给出的,当y=8时,求x的值时,注意分类讨论.【答案】D;【解析】由题意知,当时,.而,∴.(舍去).当2x=8时,x=4.综合上知,选D.【点评】正确的分类必须是周全的,既不重复、也不遗漏.类型六、与二次函数有关的动点问题6.如图所示,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A,B,C三点的抛物线的对称轴为直线,D为对称轴l上一动点.(1)求抛物线的解析式;(2)求当AD+CD最小时点D的坐标;(3)以点A为圆心,以AD为半径作⊙A.①证明:当AD+CD最小时,直线BD与⊙A相切;②写出直线BD与⊙A相切时,D点的另一个坐标.【思路点拨】根据A、B两点在x轴上,可设交点式求解析式.要AD+CD最小,根据两点之间线段最短,可判定D点位置,从而求出点D坐标.要让BD与⊙A相切,只需证AD⊥BD,由圆的对称性,可直接写出D点另一个坐标.【答案与解析】(1)设抛物线的解析式为y=a(x+1)(x-3).将(0,3)代入上式,得3=a(0+1)(0-3).解得a=-1.∴抛物线的解析式为y=-(x+1)(x-3),即.(2)连接BC,交直线于点D′.∵点B与点A关于直线l对称,∴AD′=BD′.∴AD′+CD′=BD′+CD′=BC.由“两点之间,线段最短”的原理可知:此时AD′+CD′最小,点D′的位置即为所求.设直线BC的解析式为y=kx+b,由直线BC过点(3,0),(0,3),得解这个方程组,得∴直线BC的解析式为y=-x+3.∵对称轴为x=1.将x=1代入y=-x+3,得y=-1+3=2.∴点D的坐标为(1,2).(3)①连接AD.设直线l与x轴的交点为点E.由(2)知:当AD+CD最小时,点D的坐标为(1,2).∵DE=AE=BE=2,∴∠DAB=∠DBA=45°,∴∠ADB=90°.∴AD⊥BD.∴BD与⊙A相切.②(1,-2).【点评】动点问题分单点运动和双点运动,是中考的热点问题,在运动变化中发展空间想象能力和提高综合分析问题的能力,解决此类题要“以静制动”,即把动态问题变为静态的问题去解决,解题时用运动的眼光去观察研究问题,挖掘运动变化过程中的不变量、不变关系.《二次函数》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.已知抛物线,将抛物线C平移得到抛物线.若两条抛物线C、关于直线x=1对称.则下列平移方法中,正确的是().A.将抛物线C向右平移个单位B.将抛物线C向右平移3个单位C.将抛的线C向右平移5个单位D.将抛物线C向右平移6个单位2.已知二次函数的图象如图所示,则下列5个代数式:ac,a+b+c,4a-2b+c,2a+b,2a-b中,其值大于0的个数为().A.2B.3C.4D.53.二次函数的图象如图所示,则下列关系式不正确的是().A.B.abc>0C.a+b+c>0D.4.在平面直角坐标系中,将抛物线绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.B.C.D.5.如图所示,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设⊙O1的半径为y,AM=x,则y关于x的函数关系式是().A.B.C.D.第5题第6题6.如图所示,老师出示了小黑板上的题后,小华说:过点(3,0);小彬说:过点(4,3)和(0,3);小明说:a=1,c=3;小颖说:抛物线被x轴截得的线段长为2.你认为四人的说法中,正确的有().A.1个B.2个C.3个D.4个7.已知一次函数的图象过点(-2,1),则关于抛物线的三条叙述:①过定点(2,1);②对称轴可以是直线x=l;③当a<0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的有().A.0个B.1个C.2个D.3个8.(2016•梧州)如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),直线x=﹣0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a﹣b=0;②当﹣2<x<1时,y>0;③四边形ACBD是菱形;④9a﹣3b+c>0你认为其中正确的是()A.②③④ B.①②④ C.①③④ D.①②③二、填空题9.由抛物线y=x2先向左平移2个单位,再向下平移3个单位得到的抛物线的解析式为.10.已知一元二次方程的一根为-3.在二次函数y=x2+bx-3的图象上有三点、、,y1、y2、y3、的大小关系是.11.如图所示,已知⊙P的半径为2,圆心P在抛物线上运动,当⊙P与x轴相切时,圆心P的坐标为________.第11题第13题12.(2014•义乌市校级模拟)一个二次函数的图象顶点坐标为(2,1),形状与抛物线y=﹣2x2相同,试写出这个函数解析式.13.已知二次函数(a≠0)的图象如图所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0,其中正确的有.(填序号)14.已知抛物线的顶点为,与x轴交于A、B两点,在x轴下方与x轴距离为4的点M在抛物线上,且,则点M的坐标为.15.已知二次函数(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠l的实数).其中正确的结论有________(只填序号).第15题第16题16.如图所示,抛物线向右平移1个单位得到抛物线y2.回答下列问题:(1)抛物线y2的顶点坐标________.(2)阴影部分的面积S=________.(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,则抛物线y3的开口方向________,顶点坐标________.三、解答题17.(2015•南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?18.如图所示,已知经过原点的抛物线与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P.(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);(2)在x轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;(3)设△PCD的面积为S,求S关于m的关系式.19.在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.20.(2016•菏泽)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.【答案与解析】一、选择题1.【答案】C;【解析】,∴其顶点坐标为,设顶点坐标为,由题意得,∴,∴的解析式为.由到需向右平移5个单位,因此选C.2.【答案】A;【解析】由图象知,a<0,c<0,,∴b>0,ac>0,∴2a-b<0.又对称轴,即2a+b<0.当x=1时,a+b+c>0;当x=-2时,4a-2b+c<0.综上知选A.3.【答案】C;【解析】由抛物线开口向下知a<0,由图象知c>0,,b<0,即abc>0,又抛物线与x轴有两个交点,所以.4.【答案】B;【解析】抛物线,其顶点(-1,2)绕点(0,3)旋转180°后坐标为(1,4),开口向下.∴旋转后的抛物线解析式为.5.【答案】B;【解析】连接O1M、O1O,易知两圆切点在直线OO1上,线段OO1=OA-y=2-y,O1M=y,OM=OA-AM=2-x.由勾股定理得(2-y)2=y2+(2-x)2,故.6.【答案】C;【解析】由小华的条件,抛物线过(3,0)与(1,0)两点,则对称轴为x=2;由小彬的条件,抛物线过点(4,3)又过(0,3)点,∴对称轴为直线x=2;由小明的条件a=1,c=3,得到关系式为,过点(1,0)得b=-4,对称轴为;由小颖的条件抛物线被x轴截得的线段长为2,另一交点可能是(3,0)或(-1,0),当另一交点为(-1,0)时,对称轴不是x=2.所以小颖说的不对.故选C.7.【答案】C;【解析】①若过定点(2,1),则有.整理、化简,得-2a+b=1,与题设隐含条件相符;②若对称轴是直线x=1,这时,2a-b=0,与题设隐含条件不相符;③当a<0时,抛物线开口向下,这时顶点的纵坐标为.由于,.∴.∴.综合以上分析,正确叙述的个数为2,应选C.8.【答案】D.【解析】①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b,a﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(﹣2,0)、B(1,0),∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论