版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省韶关市重点中学2024年高考临考冲刺数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,已知平面,,、是直线上的两点,、是平面内的两点,且,,,,.是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是()A. B. C. D.2.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.∅3.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为()A. B. C. D.4.若,,,则下列结论正确的是()A. B. C. D.5.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.6.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种 B.144种 C.288种 D.360种7.已知为坐标原点,角的终边经过点且,则()A. B. C. D.8.函数与在上最多有n个交点,交点分别为(,……,n),则()A.7 B.8 C.9 D.109.复数的虚部为()A.—1 B.—3 C.1 D.210.已知集合,则元素个数为()A.1 B.2 C.3 D.411.在中,,,,则边上的高为()A. B.2 C. D.12.在三棱锥中,,且分别是棱,的中点,下面四个结论:①;②平面;③三棱锥的体积的最大值为;④与一定不垂直.其中所有正确命题的序号是()A.①②③ B.②③④ C.①④ D.①②④二、填空题:本题共4小题,每小题5分,共20分。13.设、满足约束条件,若的最小值是,则的值为__________.14.如图,已知扇形的半径为1,面积为,则_____.15.已知,是互相垂直的单位向量,若与λ的夹角为60°,则实数λ的值是__.16.在平面直角坐标系中,双曲线(,)的左顶点为A,右焦点为F,过F作x轴的垂线交双曲线于点P,Q.若为直角三角形,则该双曲线的离心率是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)若,不等式的解集;(2)若,求实数的取值范围.18.(12分)已知关于的不等式有解.(1)求实数的最大值;(2)若,,均为正实数,且满足.证明:.19.(12分)已知函数.(1)若曲线在处的切线为,试求实数,的值;(2)当时,若有两个极值点,,且,,若不等式恒成立,试求实数m的取值范围.20.(12分)已知等比数列中,,是和的等差中项.(1)求数列的通项公式;(2)记,求数列的前项和.21.(12分)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女1055合计(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63522.(10分)在中,角,,所对的边分别为,,,已知,,角为锐角,的面积为.(1)求角的大小;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
为所求的二面角的平面角,由得出,求出在内的轨迹,根据轨迹的特点求出的最大值对应的余弦值【详解】,,,,同理为直线与平面所成的角,为直线与平面所成的角,又,在平面内,以为轴,以的中垂线为轴建立平面直角坐标系则,设,整理可得:在内的轨迹为为圆心,以为半径的上半圆平面平面,,为二面角的平面角,当与圆相切时,最大,取得最小值此时故选【点睛】本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.2、B【解析】试题分析:由集合A中的函数y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函数考点:交集及其运算.3、D【解析】
求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、、的齐次等式,进而可求得椭圆的离心率.【详解】由题意可得、.由,得,则,即.而,所以,所以点.因为点在椭圆上,则,整理可得,所以,所以.即椭圆的离心率为故选:D.【点睛】本题考查椭圆离心率的求解,解答的关键就是要得出、、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.4、D【解析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.5、A【解析】
由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.6、B【解析】
利用分步计数原理结合排列求解即可【详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.选.【点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题7、C【解析】
根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【详解】根据题意,,解得,所以,所以,所以.故选:C.【点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.8、C【解析】
根据直线过定点,采用数形结合,可得最多交点个数,然后利用对称性,可得结果.【详解】由题可知:直线过定点且在是关于对称如图通过图像可知:直线与最多有9个交点同时点左、右边各四个交点关于对称所以故选:C【点睛】本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.9、B【解析】
对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.10、B【解析】
作出两集合所表示的点的图象,可得选项.【详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,故选:B.【点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.11、C【解析】
结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.12、D【解析】
①通过证明平面,证得;②通过证明,证得平面;③求得三棱锥体积的最大值,由此判断③的正确性;④利用反证法证得与一定不垂直.【详解】设的中点为,连接,则,,又,所以平面,所以,故①正确;因为,所以平面,故②正确;当平面与平面垂直时,最大,最大值为,故③错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故④正确.故选:D【点睛】本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
画出满足条件的平面区域,求出交点的坐标,由得,显然直线过时,最小,代入求出的值即可.【详解】作出不等式组所表示的可行域如下图所示:联立,解得,则点.由得,显然当直线过时,该直线轴上的截距最小,此时最小,,解得.故答案为:.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.14、【解析】
根据题意,利用扇形面积公式求出圆心角,再根据等腰三角形性质求出,利用向量的数量积公式求出.【详解】设角,则,,所以在等腰三角形中,,则.故答案为:.【点睛】本题考查扇形的面积公式和向量的数量积公式,属于基础题.15、【解析】
根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设(1,0),(0,1),则(,﹣1),λ(1,λ);又夹角为60°,∴()•(λ)λ=2cos60°,即λ,解得λ.【点睛】本题考查了单位向量和平面向量数量积的运算问题,是中档题.16、2【解析】
根据是等腰直角三角形,且为中点可得,再由双曲线的性质可得,解出即得.【详解】由题,设点,由,解得,即线段,为直角三角形,,且,又为双曲线右焦点,过点,且轴,,可得,,整理得:,即,又,.故答案为:【点睛】本题考查双曲线的简单性质,是常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)依题意可得,再用零点分段法分类讨论可得;(2)依题意可得对恒成立,根据绝对值的几何意义将绝对值去掉,分别求出解集,则两解集的并集为,得到不等式即可解得;【详解】解:(1)若,,则,即,当时,原不等式等价于,解得当时,原不等式等价于,解得,所以;当时,原不等式等价于,解得;综上,原不等式的解集为;(2)即,得或,由解得,由解得,要使得的解集为,则解得,故的取值范围是.【点睛】本题考查绝对值不等式的解法,着重考查等价转化思想与分类讨论思想的综合应用,属于中档题.18、(1);(2)见解析【解析】
(1)由题意,只需找到的最大值即可;(2),构造并利用基本不等式可得,即.【详解】(1),∴的最大值为4.关于的不等式有解等价于,(ⅰ)当时,上述不等式转化为,解得,(ⅱ)当时,上述不等式转化为,解得,综上所述,实数的取值范围为,则实数的最大值为3,即.(2)证明:根据(1)求解知,所以,又∵,,,,,当且仅当时,等号成立,即,∴,所以,.【点睛】本题考查绝对值不等式中的能成立问题以及综合法证明不等式问题,是一道中档题.19、(1);(2).【解析】
(1)根据题意,求得的值,根据切点在切线上以及斜率等于,构造方程组求得的值;(2)函数有两个极值点,等价于方程的两个正根,,不等式恒成立,等价于恒成立,,令,求出导数,判断单调性,即可得到的范围,即的范围.【详解】(1)由题可知,,,联立可得.(2)当时,,,有两个极值点,,且,,是方程的两个正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是减函数,,故.【点睛】该题考查的是有关导数的问题,涉及到的知识点有导数的几何意义,函数的极值点的个数,构造新函数,应用导数研究函数的值域得到参数的取值范围,属于较难题目.20、(1)(2)【解析】
(1)用等比数列的首项和公比分别表示出已知条件,解方程组即可求得公比,代入等比数列的通项公式即可求得结果;(2)把(1)中求得的结果代入bn=an•log2an,求出bn,利用错位相减法求出Tn.【详解】(1)设数列的公比为,由题意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【点睛】本题考查等比数列的通项公式和等差中项的概念以及错位相减法求和,考查运算能力,属中档题.21、(1)无关;(2),.【解析】
(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而可得列联表如下:非体育迷体育迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得.因为3.030<3.841,所以我们没有充分理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胸膜炎临床诊疗进展-洞察分析
- 2024年桂东人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年柳州市红十字会医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 兼职销售合同(2篇)
- 2024年粤教版必修1地理下册阶段测试试卷含答案
- 2024年杭州师范大学附属医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年沪科版九年级历史下册阶段测试试卷含答案
- 2024年杂多县人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2025年统编版2024九年级数学上册阶段测试试卷
- 2025年沪教新版七年级科学上册月考试卷含答案
- 65mn弹簧钢热处理工艺
- 水电风电项目审批核准流程课件
- 足球教练员素质和角色
- 初中八年级语文课件 桃花源记【省一等奖】
- 名校长工作总结汇报
- 商务接待礼仪流程
- 护理不良事件用药错误讲课
- 新教材人教版高中英语选择性必修第一册全册教学设计
- 2024北京大兴区初三(上)期末化学试卷及答案
- 媒体与新闻法律法规法律意识与职业素养
- 推土机-推土机构造与原理
评论
0/150
提交评论