版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省成都市九校高考全国统考预测密卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设则以线段为直径的圆的方程是()A. B.C. D.2.已知数列的首项,且,其中,,,下列叙述正确的是()A.若是等差数列,则一定有 B.若是等比数列,则一定有C.若不是等差数列,则一定有 D.若不是等比数列,则一定有3.设为虚数单位,复数,则实数的值是()A.1 B.-1 C.0 D.24.若函数在处有极值,则在区间上的最大值为()A. B.2 C.1 D.35.将函数向左平移个单位,得到的图象,则满足()A.图象关于点对称,在区间上为增函数B.函数最大值为2,图象关于点对称C.图象关于直线对称,在上的最小值为1D.最小正周期为,在有两个根6.复数(i是虚数单位)在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为()A.20 B.30 C.50 D.608.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“-”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.159.已知集合,集合,那么等于()A. B. C. D.10.已知集合,,则等于()A. B. C. D.11.已知集合,则集合()A. B. C. D.12.在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是()A.平面 B.C.当时,平面 D.当m变化时,直线l的位置不变二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,且满足(其中为虚数单位),则____.14.已知函数为奇函数,,且与图象的交点为,,…,,则______.15.函数的图像如图所示,则该函数的最小正周期为________.16.已知,则展开式的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平行四边形中,,,现沿对角线将折起,使点A到达点P,点M,N分别在直线,上,且A,B,M,N四点共面.(1)求证:;(2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值.18.(12分)已知抛物线上一点到焦点的距离为2,(1)求的值与抛物线的方程;(2)抛物线上第一象限内的动点在点右侧,抛物线上第四象限内的动点,满足,求直线的斜率范围.19.(12分)设都是正数,且,.求证:.20.(12分)如图,在平面四边形中,,,.(1)求;(2)求四边形面积的最大值.21.(12分)过点作倾斜角为的直线与曲线(为参数)相交于M、N两点.(1)写出曲线C的一般方程;(2)求的最小值.22.(10分)已知矩阵,求矩阵的特征值及其相应的特征向量.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
计算的中点坐标为,圆半径为,得到圆方程.【详解】的中点坐标为:,圆半径为,圆方程为.故选:.【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.2、C【解析】
根据等差数列和等比数列的定义进行判断即可.【详解】A:当时,,显然符合是等差数列,但是此时不成立,故本说法不正确;B:当时,,显然符合是等比数列,但是此时不成立,故本说法不正确;C:当时,因此有常数,因此是等差数列,因此当不是等差数列时,一定有,故本说法正确;D:当时,若时,显然数列是等比数列,故本说法不正确.故选:C【点睛】本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.3、A【解析】
根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.4、B【解析】
根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.【详解】解:由已知得,,,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,,由于,所以在区间上的最大值为2.故选:B.【点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题.5、C【解析】
由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.6、B【解析】
利用复数的四则运算以及几何意义即可求解.【详解】解:,则复数(i是虚数单位)在复平面内对应的点的坐标为:,位于第二象限.故选:B.【点睛】本题考查了复数的四则运算以及复数的几何意义,属于基础题.7、D【解析】
先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.【详解】由题意,设A点的坐标为,根据对称性可得,则的面积为,当最大时,的面积最大,由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,又由,可得椭圆的上下顶点坐标为,所以的面积的最大值为.故选:D.【点睛】本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.8、B【解析】
由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1.故选:B.【点睛】本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.9、A【解析】
求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.10、A【解析】
进行交集的运算即可.【详解】,1,2,,,,1,.故选:.【点睛】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题.11、D【解析】
弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因,所以,故,又,,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.12、C【解析】
根据线面平行与垂直的判定与性质逐个分析即可.【详解】因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【点睛】本题考查直线与平面的位置关系.属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
计算出,两个复数相等,实部与实部相等,虚部与虚部相等,列方程组求解.【详解】,所以,所以.故答案为:-8【点睛】此题考查复数的基本运算和概念辨析,需要熟练掌握复数的运算法则.14、18【解析】
由题意得函数f(x)与g(x)的图像都关于点对称,结合函数的对称性进行求解即可.【详解】函数为奇函数,函数关于点对称,,函数关于点对称,所以两个函数图象的交点也关于点(1,2)对称,与图像的交点为,,…,,两两关于点对称,.故答案为:18【点睛】本题考查了函数对称性的应用,结合函数奇偶性以及分式函数的性质求出函数的对称性是解决本题的关键,属于中档题.15、【解析】
根据图象利用,先求出的值,结合求出,然后利用周期公式进行求解即可.【详解】解:由,得,,,则,,,即,则函数的最小正周期,故答案为:8【点睛】本题主要考查三角函数周期的求解,结合图象求出函数的解析式是解决本题的关键.16、【解析】
先根据定积分求出的值,再用二项展开式公式即可求解.【详解】因为所以的通项公式为当时,当时,故展开式中的系数为故答案为:【点睛】此题考查定积分公式,二项展开式公式等知识点,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】
(1)根据余弦定理,可得,利用//,可得//平面,然后利用线面平行的性质定理,//,最后可得结果.(2)根据二面角平面角大小为,可知N为的中点,然后利用建系,计算以及平面的一个法向量,利用向量的夹角公式,可得结果.【详解】(1)不妨设,则,在中,,则,因为,所以,因为//,且A、B、M、N四点共面,所以//平面.又平面平面,所以//.而,.(2)因为平面平面,且,所以平面,,因为,所以平面,,因为,平面与平面夹角为,所以,在中,易知N为的中点,如图,建立空间直角坐标系,则,,,,,,,,设平面的一个法向量为,则由,令,得.设与平面所成角为,则.【点睛】本题考查线面平行的性质定理以及线面角,熟练掌握利用建系的方法解决几何问题,将几何问题代数化,化繁为简,属中档题.18、(1)1;(2)【解析】
(1)根据点到焦点的距离为2,利用抛物线的定义得,再根据点在抛物线上有,列方程组求解,(2)设,根据,再由,求得,当,即时,直线斜率不存在;当时,,令,利用导数求解,【详解】(1)因为点到焦点的距离为2,即点到准线的距离为2,得,又,解得,所以抛物线方程为(2)设,由由,则当,即时,直线斜率不存在;当时,令,所以在上分别递减则【点睛】本题主要考查抛物线定义及方程的应用,还考查了分类讨论的思想和运算求解的能力,属于中档题,19、证明见解析【解析】
利用比较法进行证明:把代数式展开、作差、化简可得,,可证得成立,同理可证明,由此不等式得证.【详解】证明:因为,,所以,∴成立,又都是正数,∴,①同理,∴.【点睛】本题考查利用比较法证明不等式;考查学生的逻辑推理能力和运算求解能力;把差变形为因式乘积的形式是证明本题的关键;属于中档题。20、(1);(2)【解析】
(1)根据同角三角函数式可求得,结合正弦和角公式求得,即可求得,进而由三角函数(2)设根据余弦定理及基本不等式,可求得的最大值,结合三角形面积公式可求得的最大值,即可求得四边形面积的最大值.【详解】(1),则由同角三角函数关系式可得,则,则,所以.(2)设在中由余弦定理可得,代入可得,由基本不等式可知,即,当且仅当时取等号,由三角形面积公式可得,所以四边形面积的最大值为.【点睛】本题考查了正弦和角公式化简三角函数式的应用,余弦定理及不等式式求最值的综合应用,属于中档题.21、(1);(2).【解析】
(1)将曲线的参数方程消参得到普通方程;(2)写出直线MN的参数方程,将参数方程代入曲线方程,并将其化为一个关于的一元二次方程,根据,结合韦达定理和余弦函数的性质,即可求出的最小值.【详解】(1)由曲线C的参数方程(是参数),可得,即曲线C的一般方程为.(2)直线MN的参数方程为(t为参数),将直线MN的参数方程代入曲线,得,整理得,设M,N对应的对数分别为,,则,当时,取得最小值为.【点睛】该题考查的是有关参数方程的问题,涉及到的知识点有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 期权行使程序协议参考
- 城市广场内部亮化协议
- 生物科技信用社薪酬制度
- 项目管理走动式管理实践策略
- 预付款采购协议文本
- 医疗保险医师聘用合同细则
- 体育赛事设施招投标操作
- 演艺活动保证金协议书
- 游泳池水质维护保洁合同
- 住宅区公共区域墙纸施工协议
- 国家开放大学《教育学》形考任务1-4参考答案
- 福建省公需课考试题目(2024年)
- 上交所金桥数据中心用户手册
- 全新快递合同(2024版)
- 互联网金融(同济大学)智慧树知到期末考试答案章节答案2024年同济大学
- 2023-2024学年高考英语真题复习-定语从句(附解析)
- 人教版四年级数学上册数与代数专项复习卷(含答案)
- 辽师软件工程期末复习题
- 主题英语智慧树知到期末考试答案2024年
- 游遍亚运参赛国(地区)智慧树知到期末考试答案2024年
- 综合布线实训实验报告
评论
0/150
提交评论