版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省沧州市肃宁一中2024届高考数学三模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列的前n项和为,,且对于任意,满足,则()A. B. C. D.2.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A. B. C. D.3.中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是()A.2或 B.2或 C.或 D.或4.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是()A. B.C. D.以上情况均有可能5.给出下列四个命题:①若“且”为假命题,则﹑均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题,,则命题,;④设集合,,则“”是“”的必要条件;其中正确命题的个数是()A. B. C. D.6.正项等比数列中的、是函数的极值点,则()A. B.1 C. D.27.二项式的展开式中,常数项为()A. B.80 C. D.1608.抛物线的焦点为,点是上一点,,则()A. B. C. D.9.向量,,且,则()A. B. C. D.10.设全集,集合,则=()A. B. C. D.11.设集合,,若集合中有且仅有2个元素,则实数的取值范围为A. B.C. D.12.已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,,则的渐近线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“是或作品获得一等奖”,若这四位同学中只有两位说的话是对的,则获得一等奖的作品是___.14.已知双曲线()的左右焦点分别为,为坐标原点,点为双曲线右支上一点,若,,则双曲线的离心率的取值范围为_____.15.在的展开式中,各项系数之和为,则展开式中的常数项为__________________.16.如图,两个同心圆的半径分别为和,为大圆的一条直径,过点作小圆的切线交大圆于另一点,切点为,点为劣弧上的任一点(不包括两点),则的最大值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.(1)求的分布列及数学期望;(2)在概率(=0,1,2,3)中,若的值最大,求实数的取值范围.18.(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.19.(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,,满足,求的最小值.20.(12分)设函数.(1)若,求实数的取值范围;(2)证明:,恒成立.21.(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.(1)求曲线的方程;(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.22.(10分)已知椭圆的左,右焦点分别为,,,M是椭圆E上的一个动点,且的面积的最大值为.(1)求椭圆E的标准方程,(2)若,,四边形ABCD内接于椭圆E,,记直线AD,BC的斜率分别为,,求证:为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可.【详解】当时,.所以数列从第2项起为等差数列,,所以,,.,,.故选:.【点睛】本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题.2、C【解析】
先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【点睛】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.3、A【解析】
根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率.【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得:,得双曲线的一条渐近线的方程为∴焦点在x、y轴上两种情况讨论:
①当焦点在x轴上时有:②当焦点在y轴上时有:∴求得双曲线的离心率2或.
故选:A.【点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案.4、B【解析】
由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较.【详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,.故选:.【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.5、B【解析】
①利用真假表来判断,②考虑内角为,③利用特称命题的否定是全称命题判断,④利用集合间的包含关系判断.【详解】若“且”为假命题,则﹑中至少有一个是假命题,故①错误;当内角为时,不是象限角,故②错误;由特称命题的否定是全称命题知③正确;因为,所以,所以“”是“”的必要条件,故④正确.故选:B.【点睛】本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等知识,是一道基础题.6、B【解析】
根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得.【详解】解:依题意、是函数的极值点,也就是的两个根∴又是正项等比数列,所以∴.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.7、A【解析】
求出二项式的展开式的通式,再令的次数为零,可得结果.【详解】解:二项式展开式的通式为,令,解得,则常数项为.故选:A.【点睛】本题考查二项式定理指定项的求解,关键是熟练应用二项展开式的通式,是基础题.8、B【解析】
根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.9、D【解析】
根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.10、A【解析】
先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.11、B【解析】
由题意知且,结合数轴即可求得的取值范围.【详解】由题意知,,则,故,又,则,所以,所以本题答案为B.【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.12、D【解析】
根据为等腰三角形,可求出点P的坐标,又由的斜率为可得出关系,即可求出渐近线斜率得解.【详解】如图,因为为等腰三角形,,所以,,,又,,解得,所以双曲线的渐近线方程为,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、C【解析】
假设获得一等奖的作品,判断四位同学说对的人数.【详解】分别获奖的说对人数如下表:获奖作品ABCD甲对错错错乙错错对错丙对错对错丁对错错对说对人数3021故获得一等奖的作品是C.【点睛】本题考查逻辑推理,常用方法有:1、直接推理结果,2、假设结果检验条件.14、【解析】
法一:根据直角三角形的性质和勾股定理得,,,又由双曲线的定义得,将离心率表示成关于的式子,再令,则,令对函数求导研究函数在上单调性,可求得离心率的范围.法二:令,,,,,根据直角三角形的性质和勾股定理得,将离心率表示成关于角的三角函数,根据三角函数的恒等变化转化为关于的函数,可求得离心率的范围.【详解】法一:,,,,,,设,则,令,所以时,,在上单调递增,,,.法二:,,令,,,,,,,,,.故答案为:.【点睛】本题考查求双曲线的离心率的范围的问题,关键在于将已知条件转化为与双曲线的有关,从而将离心率表示关于某个量的函数,属于中档题.15、【解析】
利用展开式各项系数之和求得的值,由此写出展开式的通项,令指数为零求得参数的值,代入通项计算即可得解.【详解】的展开式各项系数和为,得,所以,的展开式通项为,令,得,因此,展开式中的常数项为.故答案为:.【点睛】本题考查二项展开式中常数项的计算,涉及二项展开式中各项系数和的计算,考查计算能力,属于基础题.16、【解析】
以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,从而可得、,,,然后利用向量数量积的坐标运算可得,再根据辅助角公式以及三角函数的性质即可求解.【详解】以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,则、,由,且,所以,所以,即又平分,所以,则,设,则,,所以,所以,,所以的最大值是.故答案为:【点睛】本题考查了向量数量积的坐标运算、利用向量解决几何问题,同时考查了辅助角公式以及三角函数的性质,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),ξ的分布列为ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)【解析】(1)P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列为ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的数学期望为E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范围是.18、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【解析】
(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意恒成立即可.【详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,,,,,,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单调递增,.,在上单调递增,,即成立,即成立..【点睛】本题考查函数与导数的综合应用,涉及到函数单调性、极值、零点、不等式证明,构造函数函数是解题的关键,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.19、(1);(2)【解析】
(1)首先通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;(2)首先确定m的值,然后利用柯西不等式即可证得题中的不等式.【详解】(1)因为函数定义域为,即恒成立,所以恒成立由单调性可知当时,有最大值为4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值为.当且仅当,,时,等号成立【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,意在考查学生的转化能力和计算求解能力.20、(1)(2)证明见解析【解析】
(1)将不等式化为,利用零点分段法,求得不等式的解集.(2)将要证明的不等式转化为证,恒成立,由的最小值为,得到只要证,即证,利用绝对值不等式和基本不等式,证得上式成立.【详解】(1)∵,∴,即当时,不等式化为,∴当时,不等式化为,此时无解当时,不等式化为,∴综上,原不等式的解集为(2)要证,恒成立即证,恒成立∵的最小值为-2,∴只需证,即证又∴成立,∴原题得证【点睛】本题考查绝对值不等式的性质、解法,基本不等式等知识;考查推理论证能力、运算求解能力;考查化归与转化,分类与整合思想.21、(1);(2)是定值,.【解析】
(1)设出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《蒸汽疏水阀与节能》课件
- 2023年广东省揭阳市公开招聘警务辅助人员(辅警)笔试冲刺自测题二卷含答案
- ABB工业机器人应用技术 课件 模块二 工业机器人基本操作 第1章 ABB机器人的基础操作知识
- 2021年江西省鹰潭市公开招聘警务辅助人员(辅警)笔试冲刺自测题二卷含答案
- ABB工业机器人应用技术 课件 8.8 工业机器人控制柜常见故障的诊断
- ABB工业机器人应用技术 课件 1.5 ABB机器人的转数计数器更新操作
- 2024年版广西事业单位人事聘用协议一
- 2024年版人力资源部经理岗位聘用合同版
- 《建筑业电子商务》课件
- 2024年汽车租赁合同租赁车辆及条款
- 2024年执业药师继续教育专业答案
- 口腔诊所传染病预防措施
- 国家开放大学电大《计算机应用基础(本)》学士学位论文家用电器销售管理系统的设计与实现
- 北京市西城区2023-2024学年五年级上学期期末数学试卷
- 第六章、船舶通信设备
- 造价咨询归档清单
- 浅谈如何抓好重点项目前期工作
- 智慧树知到《配位化学本科生版》章节测试答案
- 捐赠合同协议书范本 红十字会
- 4.机电安装项目质量目标与控制措施
- 内蒙古呼和浩特市中小学生家长营养知识现状调查
评论
0/150
提交评论