版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题13二次函数解答压轴题(62题)一、解答题1.(2023·浙江绍兴·统考中考真题)已知二次函数.(1)当时,①求该函数图象的顶点坐标.②当时,求的取值范围.(2)当时,的最大值为2;当时,的最大值为3,求二次函数的表达式.2.(2023·浙江·统考中考真题)已知点和在二次函数是常数,的图像上.(1)当时,求和的值;(2)若二次函数的图像经过点且点A不在坐标轴上,当时,求的取值范围;(3)求证:.3.(2023·浙江嘉兴·统考中考真题)在二次函数中,(1)若它的图象过点,则t的值为多少?(2)当时,y的最小值为,求出t的值:(3)如果都在这个二次函数的图象上,且,求m的取值范围.4.(2023·浙江杭州·统考中考真题)设二次函数,(,是实数).已知函数值和自变量的部分对应取值如下表所示:…0123……11…(1)若,求二次函数的表达式;(2)写出一个符合条件的的取值范围,使得随的增大而减小.(3)若在m、n、p这三个实数中,只有一个是正数,求的取值范围.5.(2023·湖南常德·统考中考真题)如图,二次函数的图象与x轴交于,两点,与y轴交于点C,顶点为D.O为坐标原点,.
(1)求二次函数的表达式;(2)求四边形的面积;(3)P是抛物线上的一点,且在第一象限内,若,求P点的坐标.6.(2023·山东烟台·统考中考真题)如图,抛物线与轴交于两点,与轴交于点.抛物线的对称轴与经过点的直线交于点,与轴交于点.
(1)求直线及抛物线的表达式;(2)在抛物线上是否存在点,使得是以为直角边的直角三角形?若存在,求出所有点的坐标;若不存在,请说明理由;(3)以点为圆心,画半径为2的圆,点为上一个动点,请求出的最小值.7.(2023·江苏苏州·统考中考真题)如图,二次函数的图像与轴分别交于点(点A在点的左侧),直线是对称轴.点在函数图像上,其横坐标大于4,连接,过点作,垂足为,以点为圆心,作半径为的圆,与相切,切点为.
(1)求点的坐标;(2)若以的切线长为边长的正方形的面积与的面积相等,且不经过点,求长的取值范围.8.(2023·山东东营·统考中考真题)如图,抛物线过点,,矩形的边在线段上(点B在点A的左侧),点C,D在抛物线上,设,当时,.
(1)求抛物线的函数表达式;(2)当t为何值时,矩形的周长有最大值?最大值是多少?(3)保持时的矩形不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线平分矩形的面积时,求抛物线平移的距离.9.(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,已知抛物线与x轴交于点和点B,与y轴交于点.
(1)求这条抛物线的函数解析式;(2)P是抛物线上一动点(不与点A,B,C重合),作轴,垂足为D,连接.①如图,若点P在第三象限,且,求点P的坐标;②直线交直线于点E,当点E关于直线的对称点落在y轴上时,请直接写出四边形的周长.10.(2023·四川自贡·统考中考真题)如图,抛物线与x轴交于,两点,与轴交于点.
(1)求抛物线解析式及,两点坐标;(2)以,,,为顶点的四边形是平行四边形,求点坐标;(3)该抛物线对称轴上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.11.(2023·四川达州·统考中考真题)如图,抛物线过点.
(1)求抛物线的解析式;(2)设点是直线上方抛物线上一点,求出的最大面积及此时点的坐标;(3)若点是抛物线对称轴上一动点,点为坐标平面内一点,是否存在以为边,点为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.12.(2023·四川泸州·统考中考真题)如图,在平面直角坐标系中,已知抛物线与坐标轴分别相交于点A,B,三点,其对称轴为.
(1)求该抛物线的解析式;(2)点是该抛物线上位于第一象限的一个动点,直线分别与轴,直线交于点,.①当时,求的长;②若,,的面积分别为,,,且满足,求点的坐标.13.(2023·全国·统考中考真题)如图,在平面直角坐标系中,抛物线经过点.点,在此抛物线上,其横坐标分别为,连接,.
(1)求此抛物线的解析式.(2)当点与此抛物线的顶点重合时,求的值.(3)当的边与轴平行时,求点与点的纵坐标的差.(4)设此抛物线在点与点之间部分(包括点和点)的最高点与最低点的纵坐标的差为,在点与点之间部分(包括点和点)的最高点与最低点的纵坐标的差为.当时,直接写出的值.14.(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,其中,.
(1)求该抛物线的表达式;(2)点是直线下方抛物线上一动点,过点作于点,求的最大值及此时点的坐标;(3)在(2)的条件下,将该抛物线向右平移个单位,点为点的对应点,平移后的抛物线与轴交于点,为平移后的抛物线的对称轴上任意一点.写出所有使得以为腰的是等腰三角形的点的坐标,并把求其中一个点的坐标的过程写出来.15.(2023·四川凉山·统考中考真题)如图,已知抛物线与轴交于和两点,与轴交于点.直线过抛物线的顶点.(1)求抛物线的函数解析式;(2)若直线与抛物线交于点,与直线交于点.①当取得最大值时,求的值和的最大值;②当是等腰三角形时,求点的坐标.16.(2023·四川成都·统考中考真题)如图,在平面直角坐标系中,已知抛物线经过点,与y轴交于点,直线与抛物线交于B,C两点.
(1)求抛物线的函数表达式;(2)若是以为腰的等腰三角形,求点B的坐标;(3)过点作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得始终成立?若存在,求出m的值;若不存在,请说明理由.17.(2023·安徽·统考中考真题)在平面直角坐标系中,点是坐标原点,抛物线经过点,对称轴为直线.(1)求的值;(2)已知点在抛物线上,点的横坐标为,点的横坐标为.过点作轴的垂线交直线于点,过点作轴的垂线交直线于点.(ⅰ)当时,求与的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点,使得以为顶点的四边形的面积为?若存在,请求出点的横坐标的值;若不存在,请说明理由.18.(2023·浙江金华·统考中考真题)如图,直线与轴,轴分别交于点,抛物线的顶点在直线上,与轴的交点为,其中点的坐标为.直线与直线相交于点.
(1)如图2,若抛物线经过原点.①求该抛物线的函数表达式;②求的值.(2)连接与能否相等?若能,求符合条件的点的横坐标;若不能,试说明理由.19.(2023·湖南·统考中考真题)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,.
(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由;(3)点是对称轴上一点,且点的纵坐标为,当是锐角三角形时,求的取值范围.20.(2023·四川遂宁·统考中考真题)在平面直角坐标系中,为坐标原点,抛物线经过点,,对称轴过点,,直线过点,且垂直于轴.过点的直线交抛物线于点、,交直线于点,其中点、Q在抛物线对称轴的左侧.
(1)求抛物线的解析式;(2)如图1,当时,求点的坐标;(3)如图2,当点恰好在轴上时,为直线下方的抛物线上一动点,连接、,其中交于点,设的面积为,的面积为.求的最大值.21.(2023·四川眉山·统考中考真题)在平面直角坐标系中,已知抛物线与x轴交于点两点,与y轴交于点,点P是抛物线上的一个动点.
(1)求抛物线的表达式;(2)当点P在直线上方的抛物线上时,连接交于点D.如图1.当的值最大时,求点P的坐标及的最大值;(3)过点P作x轴的垂线交直线于点M,连接,将沿直线翻折,当点M的对应点恰好落在y轴上时,请直接写出此时点M的坐标.22.(2023·江西·统考中考真题)综合与实践问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,到达点A时停止,以为边作正方形设点P的运动时间为,正方形的而积为S,探究S与t的关系
(1)初步感知:如图1,当点P由点C运动到点B时,①当时,_______.②S关于t的函数解析式为_______.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段的长.(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.①_______;②当时,求正方形的面积.23.(2023·新疆·统考中考真题)【建立模型】(1)如图,点是线段上的一点,,,,垂足分别为,,,.求证:;【类比迁移】(2)如图,一次函数的图象与轴交于点、与轴交于点,将线段绕点逆时针旋转得到、直线交轴于点.①求点的坐标;②求直线的解析式;【拓展延伸】(3)如图,抛物线与轴交于,两点点在点的左侧,与轴交于点,已知点,,连接.抛物线上是否存在点,使得,若存在,求出点的横坐标.
24.(2023·甘肃武威·统考中考真题)如图1,抛物线与轴交于点,与直线交于点,点在轴上.点从点出发,沿线段方向匀速运动,运动到点时停止.(1)求抛物线的表达式;(2)当时,请在图1中过点作交抛物线于点,连接,,判断四边形的形状,并说明理由.(3)如图2,点从点开始运动时,点从点同时出发,以与点相同的速度沿轴正方向匀速运动,点停止运动时点也停止运动.连接,,求的最小值.25.(2023·四川乐山·统考中考真题)已知是抛物(b为常数)上的两点,当时,总有(1)求b的值;(2)将抛物线平移后得到抛物线.探究下列问题:①若抛物线与抛物线有一个交点,求m的取值范围;②设抛物线与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为点E,外接圆的圆心为点F,如果对抛物线上的任意一点P,在抛物线上总存在一点Q,使得点P、Q的纵坐标相等.求长的取值范围.26.(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线交轴于点,直线交抛物线于两点(点在点的左侧),交轴于点,交轴于点.
(1)求点的坐标;(2)是线段上一点,连接,且.①求证:是直角三角形;②的平分线交线段于点是直线上方抛物线上一动点,当时,求点的坐标.27.(2023·上海·统考中考真题)在平面直角坐标系中,已知直线与x轴交于点A,y轴交于点B,点C在线段上,以点C为顶点的抛物线M:经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结,且轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.28.(2023·江苏扬州·统考中考真题)在平面直角坐标系中,已知点A在y轴正半轴上.
(1)如果四个点中恰有三个点在二次函数(a为常数,且)的图象上.①________;②如图1,已知菱形的顶点B、C、D在该二次函数的图象上,且轴,求菱形的边长;③如图2,已知正方形的顶点B、D在该二次函数的图象上,点B、D在y轴的同侧,且点B在点D的左侧,设点B、D的横坐标分别为m、n,试探究是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形的顶点B、D在二次函数(a为常数,且)的图象上,点B在点D的左侧,设点B、D的横坐标分别为m、n,直接写出m、n满足的等量关系式.29.(2023·湖南岳阳·统考中考真题)已知抛物线与轴交于两点,交轴于点.
(1)请求出抛物线的表达式.(2)如图1,在轴上有一点,点在抛物线上,点为坐标平面内一点,是否存在点使得四边形为正方形?若存在,请求出点的坐标;若不存在,请说明理由.(3)如图2,将抛物线向右平移2个单位,得到抛物线,抛物线的顶点为,与轴正半轴交于点,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.30.(2023·湖南永州·统考中考真题)如图1,抛物线(,,为常数)经过点,顶点坐标为,点为抛物线上的动点,轴于H,且.
(1)求抛物线的表达式;(2)如图1,直线交于点,求的最大值;(3)如图2,四边形为正方形,交轴于点,交的延长线于,且,求点的横坐标.31.(2023·山东枣庄·统考中考真题)如图,抛物线经过两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与轴交于点D.
(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.32.(2023·湖北随州·统考中考真题)如图1,平面直角坐标系中,抛物线过点,和,连接,点为抛物线上一动点,过点作轴交直线于点,交轴于点.
(1)直接写出抛物线和直线的解析式;(2)如图2,连接,当为等腰三角形时,求的值;(3)当点在运动过程中,在轴上是否存在点,使得以,,为顶点的三角形与以,,为顶点的三角形相似(其中点与点相对应),若存在,直接写出点和点的坐标;若不存在,请说明理由.33.(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,抛物线与x轴交于,两点.与y轴交于点.(1)求该抛物线的函数表达式;(2)若点P是直线下方抛物线上的一动点,过点P作x轴的平行线交于点K,过点P作y轴的平行线交x轴于点D,求与的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得是以为一条直角边的直角三角形:若存在,请求出点M的坐标,若不存在,请说明理由.34.(2023·湖南·统考中考真题)已知二次函数.(1)若,且该二次函数的图像过点,求的值;(2)如图所示,在平面直角坐标系中,该二次函数的图像与轴交于点,且,点D在上且在第二象限内,点在轴正半轴上,连接,且线段交轴正半轴于点,.
①求证:.②当点在线段上,且.的半径长为线段的长度的倍,若,求的值.35.(2023·山西·统考中考真题)如图,二次函数的图象与轴的正半轴交于点A,经过点A的直线与该函数图象交于点,与轴交于点C.
(1)求直线的函数表达式及点C的坐标;(2)点是第一象限内二次函数图象上的一个动点,过点作直线轴于点,与直线交于点D,设点的横坐标为.①当时,求的值;②当点在直线上方时,连接,过点作轴于点,与交于点,连接.设四边形的面积为,求关于的函数表达式,并求出S的最大值.36.(2023·湖北武汉·统考中考真题)抛物线交轴于两点(在的左边),交轴于点.
(1)直接写出三点的坐标;(2)如图(1),作直线,分别交轴,线段,抛物线于三点,连接.若与相似,求的值;(3)如图(2),将抛物线平移得到抛物线,其顶点为原点.直线与抛物线交于两点,过的中点作直线(异于直线)交抛物线于两点,直线与直线交于点.问点是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.37.(2023·湖北宜昌·统考中考真题)如图,已知.点E位于第二象限且在直线上,,,连接.
(1)直接判断的形状:是_________三角形;(2)求证:;(3)直线EA交x轴于点.将经过B,C两点的抛物线向左平移2个单位,得到抛物线.①若直线与抛物线有唯一交点,求t的值;②若抛物线的顶点P在直线上,求t的值;③将抛物线再向下平移,个单位,得到抛物线.若点D在抛物线上,求点D的坐标.38.(2023·湖南郴州·统考中考真题)已知抛物线与轴相交于点,,与轴相交于点.(1)求抛物线的表达式;(2)如图1,点是抛物线的对称轴上的一个动点,当的周长最小时,求的值;(3)如图2,取线段的中点,在抛物线上是否存在点,使?若存在,求出点的坐标;若不存在,请说明理由.39.(2023·湖北黄冈·统考中考真题)已知抛物线与x轴交于两点,与y轴交于点,点P为第一象限抛物线上的点,连接.
(1)直接写出结果;_____,_____,点A的坐标为_____,______;(2)如图1,当时,求点P的坐标;(3)如图2,点D在y轴负半轴上,,点Q为抛物线上一点,,点E,F分别为的边上的动点,,记的最小值为m.①求m的值;②设的面积为S,若,请直接写出k的取值范围.40.(2023·湖南·统考中考真题)如图,在平面直角坐标系中,抛物线经过点和点,且与直线交于两点(点在点的右侧),点为直线上的一动点,设点的横坐标为.
(1)求抛物线的解析式.(2)过点作轴的垂线,与拋物线交于点.若,求面积的最大值.(3)抛物线与轴交于点,点为平面直角坐标系上一点,若以为顶点的四边形是菱形,请求出所有满足条件的点的坐标.41.(2023·四川·统考中考真题)如图1,在平面直角坐标系中,已知二次函数的图象与x轴交于点,,与轴交于点.
(1)求抛物线的解析式;(2)已知为抛物线上一点,为抛物线对称轴上一点,以,,为顶点的三角形是等腰直角三角形,且,求出点的坐标;(3)如图,为第一象限内抛物线上一点,连接交轴于点,连接并延长交轴于点,在点运动过程中,是否为定值?若是,求出这个定值;若不是,请说明理由.42.(2023·山东聊城·统考中考真题)如图①,抛物线与x轴交于点,,与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作,交AC于点E,作,垂足为点D.当m为何值时,面积最大,并求出最大值.43.(2023·湖北荆州·统考中考真题)已知:关于的函数.
(1)若函数的图象与坐标轴有两个公共点,且,则的值是___________;(2)如图,若函数的图象为抛物线,与轴有两个公共点,,并与动直线交于点,连接,,,,其中交轴于点,交于点.设的面积为,的面积为.①当点为抛物线顶点时,求的面积;②探究直线在运动过程中,是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.44.(2023·福建·统考中考真题)已知抛物线交轴于两点,为抛物线的顶点,为抛物线上不与重合的相异两点,记中点为,直线的交点为.(1)求抛物线的函数表达式;(2)若,且,求证:三点共线;(3)小明研究发现:无论在抛物线上如何运动,只要三点共线,中必存在面积为定值的三角形.请直接写出其中面积为定值的三角形及其面积,不必说明理由.45.(2023·山东·统考中考真题)如图,直线交轴于点,交轴于点,对称轴为的抛物线经过两点,交轴负半轴于点.为抛物线上一动点,点的横坐标为,过点作轴的平行线交抛物线于另一点,作轴的垂线,垂足为,直线交轴于点.
(1)求抛物线的解析式;(2)若,当为何值时,四边形是平行四边形?(3)若,设直线交直线于点,是否存在这样的值,使?若存在,求出此时的值;若不存在,请说明理由.46.(2023·山东·统考中考真题)已知抛物线与x轴交于A,B两点,与y轴交于点,其对称轴为.
(1)求抛物线的表达式;(2)如图1,点D是线段上的一动点,连接,将沿直线翻折,得到,当点恰好落在抛物线的对称轴上时,求点D的坐标;(3)如图2,动点P在直线上方的抛物线上,过点P作直线的垂线,分别交直线,线段于点E,F,过点F作轴,垂足为G,求的最大值.47.(2023·辽宁大连·统考中考真题)如图,在平面直角坐标系中,抛物线上有两点,其中点的横坐标为,点的横坐标为,抛物线过点.过作轴交抛物线另一点为点.以长为边向上构造矩形.
(1)求抛物线的解析式;(2)将矩形向左平移个单位,向下平移个单位得到矩形,点的对应点落在抛物线上.①求关于的函数关系式,并直接写出自变量的取值范围;②直线交抛物线于点,交抛物线于点.当点为线段的中点时,求的值;③抛物线与边分别相交于点,点在抛物线的对称轴同侧,当时,求点的坐标.48.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中,已知二次函数的图象与x轴交于点和点两点,与y轴交于点.点D为线段上的一动点.
(1)求二次函数的表达式;(2)如图1,求周长的最小值;(3)如图2,过动点D作交抛物线第一象限部分于点P,连接,记与的面积和为S,当S取得最大值时,求点P的坐标,并求出此时S的最大值.49.(2023·黑龙江绥化·统考中考真题)如图,抛物线的图象经过,,三点,且一次函数的图象经过点.
(1)求抛物线和一次函数的解析式.(2)点,为平面内两点,若以、、、为顶点的四边形是正方形,且点在点的左侧.这样的,两点是否存在?如果存在,请直接写出所有满足条件的点的坐标:如果不存在,请说明理由.(3)将抛物线的图象向右平移个单位长度得到抛物线,此抛物线的图象与轴交于,两点(点在点左侧).点是抛物线上的一个动点且在直线下方.已知点的横坐标为.过点作于点.求为何值时,有最大值,最大值是多少?50.(2023·四川南充·统考中考真题)如图1,抛物线()与轴交于,两点,与轴交于点.(1)求抛物线的解析式;(2)点P在抛物线上,点Q在x轴上,以B,C,P,Q为顶点的四边形为平行四边形,求点P的坐标;(3)如图2,抛物线顶点为D,对称轴与x轴交于点E,过点的直线(直线除外)与抛物线交于G,H两点,直线,分别交x轴于点M,N.试探究是否为定值,若是,求出该定值;若不是,说明理由.51.(2023·四川宜宾·统考中考真题)如图,抛物线与x轴交于点、,且经过点.
(1)求抛物线的表达式;(2)在x轴上方的抛物线上任取一点N,射线、分别与抛物线的对称轴交于点P、Q,点Q关于x轴的对称点为,求的面积;(3)点M是y轴上一动点,当最大时,求M的坐标.52.(2023·四川广安·统考中考真题)如图,二次函数的图象交轴于点,交轴于点,点的坐标为,对称轴是直线,点是轴上一动点,轴,交直线于点,交抛物线于点.
(1)求这个二次函数的解析式.(2)若点在线段上运动(点与点、点不重合),求四边形面积的最大值,并求出此时点的坐标.(3)若点在轴上运动,则在轴上是否存在点,使以、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由.53.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系中,抛物线的顶点为.直线过点,且平行于轴,与抛物线交于两点(在的右侧).将抛物线沿直线翻折得到抛物线,抛物线交轴于点,顶点为.
(1)当时,求点的坐标;(2)连接,若为直角三角形,求此时所对应的函数表达式;(3)在(2)的条件下,若的面积为两点分别在边上运动,且,以为一边作正方形,连接,写出长度的最小值,并简要说明理由.54.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数(实数为常数)的图象为图象.(1)求证:无论取什么实数,图象与轴总有公共点;(2)是否存在整数,使图象与轴的公共点中有整点?若存在,求所有整数的值;若不存在,请说明理由.55.(2023·湖南怀化·统考中考真题)如图一所示,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点.
(1)求抛物线的函数表达式及顶点坐标;(2)点为第三象限内抛物线上一点,作直线,连接、,求面积的最大值及此时点的坐标;(3)设直线交抛物线于点、,求证:无论为何值,平行于轴的直线上总存在一点,使得为直角.56.(2023·湖南·统考中考真题)如图,已知抛物线与x轴交于点和点B,与y轴交于点C,连接,过B、C两点作直线.
(1)求a的值.(2)将直线向下平移个单位长度,交抛物线于、两点.在直线上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线的距离最大,若存在,请求出点D的坐标;若不存在,请说明理由.(3)抛物线上是否存在点P,使,若存在,请求出直线的解析式;若不存在,请说明理由.57.(2023·天津·统考中考真题)已知抛物线,为常数,的顶点为,与轴相交于,两点点在点的左侧,与轴相交于点,抛物线上的点的横坐标为,且,过点作,垂足为.(1)若.①求点和点的坐标;②当时,求点的坐标;(2)若点的坐标为,且,当时,求点的坐标.58.(2023·湖北十堰·统考中考真题)已知抛物线过点和点,与轴交于点.
(1)求抛物线的解析式;(2)如图1,连接,点在线段上(与点不重合),点是的中点,连接,过点作交于点,连接,当面积是面积的3倍时,求点的坐标;(3)如图2,点是抛物线上对称轴右侧的点,是轴正半轴上的动点,若线段上存在点(与点不重合),使得,求的取值范围.59.(2023·吉林长春·统考中考真题)在平面直角坐标系中,点为坐标原点,抛物线(是常数)经过点.点的坐标为,点在该抛物线上,横坐标为.其中.
(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点在轴上时,求点的坐标;(3)该抛物线与轴的左交点为,当抛物线在点和点之间的部分(包括、两点)的最高点与最低点的纵坐标之差为时,求的值.(4)当点在轴上方时,过点作轴于点,连结、.若四边形的边和抛物线有两个交点(不包括四边形的顶点),设这两个交点分别为点、点,线段的中点为.当以点、、、(或以点、、、)为顶点的四边形的面积是四边形面积的一半时,直接写出所有满足条件的的值.60.(2023·湖北·统考中考真题)如图1,在平面直角坐标系中,已知抛物线与轴交于点,与轴交于点,顶点为,连接.
(1)抛物线的解析式为__________________;(直接写出结果)(2)在图1中,连接并延长交的延长线于点,求的度数;(3)如图2,若动直线与抛物线交于两点(直线与不重合),连接,直线与交于点.当时,点的横坐标是否为定值,请说明理由.61.(2023·黑龙江齐齐哈尔·统考中考真题)综合与探究如图,抛物线上的点A,C坐标分别为,,抛物线与x轴负半轴交于点B,点M为y轴负半轴上一点,且,连接,.
(1)求点M的坐标及抛物线的解析式;(2)点P是抛物线位于第一象限图象上的动点,连接,,当时,求点P的坐标;(3)点D是线段(包含点B,C)上的动点,过点D作x轴的垂线,交抛物线于点Q,交直线于点N,若以点Q,N,C为顶点的三角形与相似,请直接写出点Q的坐标;(4)将抛物线沿x轴的负方向平移得到新抛物线,点A的对应点为点,点C的对应点为点,在抛物线平移过程中,当的值最小时,新抛物线的顶点坐标为______,的最小值为______.62.(2023·湖北鄂州·统考中考真题)某数学兴趣小组运用《几何画板》软件探究型抛物线图象.发现:如图1所示,该类型图象上任意一点P到定点的距离,始终等于它到定直线l:的距离(该结论不需要证明).他们称:定点F为图象的焦点,定直线l为图象的准线,叫做抛物线的准线方程.准线l与y轴的交点为H.其中原点O为的中点,.例如,抛物线,其焦点坐标为,准线方程为l:,其中,.
【基础训练】(1)请分别直接写出抛物线的焦点坐标和准线l的方程:___________,___________;【技能训练】(2)如图2,已知抛物线上一点到焦点F的距离是它到x轴距离的3倍,求点P的坐标;【能力提升】(3)如图3,已知抛物线的焦点为F,准线方程为l.直线m:交y轴于点C,抛物线上动点P到x轴的距离为,到直线m的距离为,请直接写出的最小值;【拓展延伸】该兴趣小组继续探究还发现:若将抛物线平移至.抛物线内有一定点,直线l过点且与x轴平行.当动点P在该抛物线上运动时,点P到直线l的距离始终等于点P到点F的距离(该结论不需要证明).例如:抛物线上的动点P到点的距离等于点P到直线l:的距离.请阅读上面的材料,探究下题:(4)如图4,点是第二象限内一定点,点P是抛物线上一动点,当取最小值时,请求出的面积.
专题13二次函数解答压轴题(62题)一、解答题1.(2023·浙江绍兴·统考中考真题)已知二次函数.(1)当时,①求该函数图象的顶点坐标.②当时,求的取值范围.(2)当时,的最大值为2;当时,的最大值为3,求二次函数的表达式.【答案】(1)①;②当时,;(2)【分析】(1)①将代入解析式,化为顶点式,即可求解;②已知顶点,根据二次函数的增减性,得出当时,有最大值7,当时取得最小值,即可求解;(2)根据题意时,的最大值为2;时,的最大值为3,得出抛物线的对称轴在轴的右侧,即,由抛物线开口向下,时,的最大值为2,可知,根据顶点坐标的纵坐标为3,求出,即可得解.【详解】(1)解:①当时,,∴顶点坐标为.②∵顶点坐标为.抛物线开口向下,当时,随增大而增大,当时,随增大而减小,∴当时,有最大值7.又∴当时取得最小值,最小值;∴当时,.(2)∵时,的最大值为2;时,的最大值为3,∴抛物线的对称轴在轴的右侧,∴,∵抛物线开口向下,时,的最大值为2,∴,又∵,∴,∵,∴,∴二次函数的表达式为.【点睛】本题考查了待定系数法求二次函数解析式,顶点式,二次函数的最值问题,熟练掌握二次函数的性质是解题的关键.2.(2023·浙江·统考中考真题)已知点和在二次函数是常数,的图像上.(1)当时,求和的值;(2)若二次函数的图像经过点且点A不在坐标轴上,当时,求的取值范围;(3)求证:.【答案】(1);(2);(3)见解析【分析】(1)由可得图像过点和,然后代入解析式解方程组即可解答;(2)先确定函数图像的对称轴为直线,则抛物线过点,即,然后再结合即可解答;(3)根据图像的对称性得,即,顶点坐标为;将点和分别代入表达式并进行运算可得;则,进而得到,然后化简变形即可证明结论.【详解】(1)解:当时,图像过点和,∴,解得,∴,∴.(2)解:∵函数图像过点和,∴函数图像的对称轴为直线.∵图像过点,∴根据图像的对称性得.∵,∴.(3)解:∵图像过点和,∴根据图像的对称性得.∴,顶点坐标为.将点和分别代人表达式可得①②得,∴.∴.∴.∴.∴.【点睛】本题主要考查了运用待定系数法求二次函数解析式、二次函数的对称性、解不等式等知识点,掌握二次函数的对称性是解答本题的关键.3.(2023·浙江嘉兴·统考中考真题)在二次函数中,(1)若它的图象过点,则t的值为多少?(2)当时,y的最小值为,求出t的值:(3)如果都在这个二次函数的图象上,且,求m的取值范围.【答案】(1);(2);(3)或【分析】(1)将坐标代入解析式,求解待定参数值;(2)确定抛物线的对称轴,对待定参数分类讨论,分,当时,函数值最小,以及,当时,函数值最小,求得相应的t值即可得;(3)由关于对称轴对称得,且A在对称轴左侧,C在对称轴右侧;确定抛物线与y轴交点,此交点关于对称轴的对称点为,结合已知确定出;再分类讨论:A,B都在对称轴左边时,A,B分别在对称轴两侧时,分别列出不等式进行求解即可.【详解】(1)将代入中,得,解得,;(2)抛物线对称轴为.若,当时,函数值最小,,解得.,若,当时,函数值最小,,解得(不合题意,舍去)综上所述.(3)关于对称轴对称,且A在对称轴左侧,C在对称轴右侧抛物线与y轴交点为,抛物线对称轴为直线,此交点关于对称轴的对称点为且,解得.当A,B都在对称轴左边时,,解得,当A,B分别在对称轴两侧时到对称轴的距离大于A到对称轴的距离,解得综上所述或.【点睛】本题考查二次函数图象的性质、极值问题;存在待定参数的情况下,对可能情况作出分类讨论是解题的关键.4.(2023·浙江杭州·统考中考真题)设二次函数,(,是实数).已知函数值和自变量的部分对应取值如下表所示:…0123……11…(1)若,求二次函数的表达式;(2)写出一个符合条件的的取值范围,使得随的增大而减小.(3)若在m、n、p这三个实数中,只有一个是正数,求的取值范围.【答案】(1);(2)当时,则时,随的增大而减小;当时,则时,随的增大而减小;(3)【分析】(1)用待定系数法求解即可.(2)利用抛物线的对称性质求得抛物线的对称轴为直线;再根据抛物线的增减性求解即可.(3)先把代入,得,从而得,再求出,,,从而得,然后m、n、p这三个实数中,只有一个是正数,得,求解即可.【详解】(1)解:把,代入,得,解得:,∴.(2)解:∵,在图象上,∴抛物线的对称轴为直线,∴当时,则时,随的增大而减小,当时,则时,随的增大而减小.(3)解:把代入,得,∴∴把代入得,,把代入得,,把代入得,,∴,∵m、n、p这三个实数中,只有一个是正数,∴,解得:.【点睛】本题考查用待定系数法求抛物线解析式,抛物线的图象性质,解不等式组,熟练掌握用待定系数法求抛物线解析式和抛物线的图象性质是解析的关键.5.(2023·湖南常德·统考中考真题)如图,二次函数的图象与x轴交于,两点,与y轴交于点C,顶点为D.O为坐标原点,.
(1)求二次函数的表达式;(2)求四边形的面积;(3)P是抛物线上的一点,且在第一象限内,若,求P点的坐标.【答案】(1);(2)30;(3)【分析】(1)用两点式设出二次函数的解析式,然后求得C点的坐标,并将其代入二次函数的解析式,求得a的值,再将a代入解析式中即可.(2)先将二次函数变形为顶点式,求得顶点坐标,然后利用矩形、三角形的面积公式即可求得答案.(3)根据各点的坐标的关系及同角三角函数相等的结论可以求得相关联的函数解析式,最后联立一次函数与二次函数的解析式,求得点P的坐标.【详解】(1)∵二次函数的图象与轴交于两点.∴设二次函数的表达式为∵,∴,即的坐标为则,得∴二次函数的表达式为;(2)∴顶点的坐标为过作于,作于,四边形的面积;
(3)如图,是抛物线上的一点,且在第一象限,当时,连接,过作交于,过作于,
∵,则为等腰直角三角形,.由勾股定理得:,∵,∴,即,∴由,得,∴.∴是等腰直角三角形∴∴的坐标为所以过的直线的解析式为令解得,或所以直线与抛物线的两个交点为即所求的坐标为【点睛】本题考查了一次函数、二次函数的性质以及与坐标系几何图形的综合证明计算问题,解题的关键是将所学的知识灵活运用.6.(2023·山东烟台·统考中考真题)如图,抛物线与轴交于两点,与轴交于点.抛物线的对称轴与经过点的直线交于点,与轴交于点.
(1)求直线及抛物线的表达式;(2)在抛物线上是否存在点,使得是以为直角边的直角三角形?若存在,求出所有点的坐标;若不存在,请说明理由;(3)以点为圆心,画半径为2的圆,点为上一个动点,请求出的最小值.【答案】(1)直线的解析式为;抛物线解析式为;(2)存在,点M的坐标为或或;(3)【分析】(1)根据对称轴,,得到点A及B的坐标,再利用待定系数法求解析式即可;(2)先求出点D的坐标,再分两种情况:①当时,求出直线的解析式为,解方程组,即可得到点M的坐标;②当时,求出直线的解析式为,解方程组,即可得到点M的坐标;(3)在上取点,使,连接,证得,又,得到,推出,进而得到当点C、P、F三点共线时,的值最小,即为线段的长,利用勾股定理求出即可.【详解】(1)解:∵抛物线的对称轴,,∴,将代入直线,得,解得,∴直线的解析式为;将代入,得,解得,∴抛物线的解析式为;(2)存在点,∵直线的解析式为,抛物线对称轴与轴交于点.∴当时,,∴,①当时,设直线的解析式为,将点A坐标代入,得,解得,∴直线的解析式为,解方程组,得或,∴点M的坐标为;②当时,设直线的解析式为,将代入,得,解得,∴直线的解析式为,解方程组,解得或,∴点M的坐标为或综上,点M的坐标为或或;(3)如图,在上取点,使,连接,∵,∴,∵,、∴,又∵,∴,∴,即,∴,∴当点C、P、F三点共线时,的值最小,即为线段的长,∵,∴,∴的最小值为.
【点睛】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.7.(2023·江苏苏州·统考中考真题)如图,二次函数的图像与轴分别交于点(点A在点的左侧),直线是对称轴.点在函数图像上,其横坐标大于4,连接,过点作,垂足为,以点为圆心,作半径为的圆,与相切,切点为.
(1)求点的坐标;(2)若以的切线长为边长的正方形的面积与的面积相等,且不经过点,求长的取值范围.【答案】(1);(2)或或【分析】(1)令求得点的横坐标即可解答;(2)由题意可得抛物线的对称轴为,设,则;如图连接,则,进而可得切线长为边长的正方形的面积为;过点P作轴,垂足为H,可得;由题意可得,解得;然后再分当点M在点N的上方和下方两种情况解答即可.【详解】(1)解:令,则有:,解得:或,∴.(2)解:∵抛物线过∴抛物线的对称轴为,设,∵,∴,如图:连接,则,∴,∴切线为边长的正方形的面积为,过点P作轴,垂足为H,则:,∴∵,∴,
假设过点,则有以下两种情况:①如图1:当点M在点N的上方,即
∴,解得:或,∵∴;②如图2:当点M在点N的上方,即
∴,解得:,∵∴;综上,或.∴当不经过点时,或或.【点睛】本题主要考查了二次函数的性质、切线的性质、勾股定理等知识点,掌握分类讨论思想是解答本题的关键.8.(2023·山东东营·统考中考真题)如图,抛物线过点,,矩形的边在线段上(点B在点A的左侧),点C,D在抛物线上,设,当时,.
(1)求抛物线的函数表达式;(2)当t为何值时,矩形的周长有最大值?最大值是多少?(3)保持时的矩形不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线平分矩形的面积时,求抛物线平移的距离.【答案】(1);(2)当时,矩形的周长有最大值,最大值为;(3)4【分析】(1)设抛物线的函数表达式为,求出点C的坐标,将点C的坐标代入即可求出该抛物线的函数表达式;(2)由抛物线的对称性得,则,再得出,根据矩形的周长公式,列出矩形周长的表达式,并将其化为顶点式,即可求解;(3)连接A,相交于点P,连接,取的中点Q,连接,根据矩形的性质和平移的性质推出四边形是平行四边形,则,.求出时,点A的坐标为,则,即可得出结论.【详解】(1)解:设抛物线的函数表达式为.∵当时,,∴点C的坐标为.将点C坐标代入表达式,得,解得.∴抛物线的函数表达式为.(2)解:由抛物线的对称性得:,∴.当时,.∴矩形的周长为.∵,∴当时,矩形的周长有最大值,最大值为.(3)解:连接,相交于点P,连接,取的中点Q,连接.
∵直线平分矩形的面积,∴直线过点P..由平移的性质可知,四边形是平行四边形,∴.∵四边形是矩形,∴P是的中点.∴.当时,点A的坐标为,∴.∴抛物线平移的距离是4.【点睛】本题主要考查了求二次函数的解析式,二次函数的图象和性质,矩形的性质,平移的性质,解题的关键是掌握用待定系数法求解二次函数表达式的方法和步骤,二次函数图象上点的坐标特征,矩形的性质,以及平移的性质.9.(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,已知抛物线与x轴交于点和点B,与y轴交于点.
(1)求这条抛物线的函数解析式;(2)P是抛物线上一动点(不与点A,B,C重合),作轴,垂足为D,连接.①如图,若点P在第三象限,且,求点P的坐标;②直线交直线于点E,当点E关于直线的对称点落在y轴上时,请直接写出四边形的周长.【答案】(1);(2)①②或【分析】(1)将A,C两点坐标代入抛物线的解析式,从而求得a,c,进而求得结果;(2)①设,过点作于点,求出,根据列出方程求出的值即可;②可推出四边形是菱形,从而得出,分别表示出和,从而列出方程,进一步求得结果.【详解】(1)∵抛物线与x轴交于点,与y轴交于点,∴把,代入得,,解得,,∴抛物线的函数解析式为;(2)①设,过点作于点,如图,
∴∵∴∵轴,∴又∴四边形是矩形,∴∴∵∴∴(不合题意,舍去)∴∴;②设,对于,当时,解得,∴∵由勾股定理得,当点在第三象限时,如图,过点作轴于点,
则四边形是矩形,∵点与点关于对称,∴∵轴,∴∴∴∴∴四边形是平行四边形,∴四边形是菱形,∵∴∴∴∴设直线的解析式为,把代入得,,解得,,∴直线的解析式为,∴,∴,又且∴解得,(舍去)∴∴四边形的周长;当点在第二象限时,如图,
同理可得:解得,(舍去)∴∴四边形的周长;综上,四边形的周长为或.【点睛】本题考查了求一次函数和二次函数的解析式,等腰三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,轴对称性质等知识,解决问题的关键是正确分类,作辅助线,表示出线段的数量.10.(2023·四川自贡·统考中考真题)如图,抛物线与x轴交于,两点,与轴交于点.
(1)求抛物线解析式及,两点坐标;(2)以,,,为顶点的四边形是平行四边形,求点坐标;(3)该抛物线对称轴上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为,,;(2)或或;(3)【分析】(1)将点代入抛物线解析式,待定系数法求解析式,进而分别令,即可求得两点的坐标;(2)分三种情况讨论,当,为对角线时,根据中点坐标即可求解;(3)根据题意,作出图形,作交于点,为的中点,连接,则在上,根据等弧所对的圆周角相等,得出在上,进而勾股定理,根据建立方程,求得点的坐标,进而得出的解析式,即可求解.【详解】(1)解:∵抛物线与x轴交于,∴解得:,∴抛物线解析式为,当时,,∴,当时,解得:,∴(2)∵,,,设,∵以,,,为顶点的四边形是平行四边形当为对角线时,解得:,∴;当为对角线时,解得:∴当为对角线时,解得:∴综上所述,以,,,为顶点的四边形是平行四边形,或或(3)解:如图所示,作交于点,为的中点,连接,
∵∴是等腰直角三角形,∴在上,∵,,∴,,∵,∴在上,设,则解得:(舍去)∴点设直线的解析式为∴解得:.∴直线的解析式∵,,∴抛物线对称轴为直线,当时,,∴.【点睛】本题考查了二次函数的综合运用,待定系数法求解析式,平行四边形的性质,圆周角角定理,勾股定理,求一次函数解析式,熟练掌握以上知识是解题的关键.11.(2023·四川达州·统考中考真题)如图,抛物线过点.
(1)求抛物线的解析式;(2)设点是直线上方抛物线上一点,求出的最大面积及此时点的坐标;(3)若点是抛物线对称轴上一动点,点为坐标平面内一点,是否存在以为边,点为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.【答案】(1);(2)的最大面积为,;(3)存在,或或,,见解析【分析】(1)利用待定系数法代入求解即可;(2)利用待定系数法先确定直线的解析式为,设点,过点P作轴于点D,交于点E,得出,然后得出三角形面积的函数即可得出结果;(3)分两种情况进行分析:若为菱形的边长,利用菱形的性质求解即可.【详解】(1)解:将点代入解析式得:,解得:,∴抛物线的解析式为;(2)设直线的解析式为,将点B、C代入得:,解得:,∴直线的解析式为,∵,∴,设点,过点P作轴于点D,交于点E,如图所示:
∴,∴,∴,∴当时,的最大面积为,,∴(3)存在,或或或,,证明如下:∵,∵抛物线的解析式为,∴对称轴为:,设点,若为菱形的边长,菱形,则,即,解得:,,∵,∴,∴,;若为菱形的边长,菱形,则,即,解得:,,∵,∴,∴,;综上可得:或或,.【点睛】题目主要考查二次函数的综合应用,包括待定系数法确定函数解析式,三角形面积问题及特殊四边形问题,全等三角形的判定和性质等,理解题意,综合运用这些知识点是解题关键.12.(2023·四川泸州·统考中考真题)如图,在平面直角坐标系中,已知抛物线与坐标轴分别相交于点A,B,三点,其对称轴为.
(1)求该抛物线的解析式;(2)点是该抛物线上位于第一象限的一个动点,直线分别与轴,直线交于点,.①当时,求的长;②若,,的面积分别为,,,且满足,求点的坐标.【答案】(1);(2)①;②【分析】(1)根据抛物线对称轴为,可得,求得,再将代入抛物线,根据待定系数法求得,即可解答;(2)①求出点,点的坐标,即可得到直线的解析式为,设,则,求得的解析式,列方程求出点的坐标,最后根据列方程,即可求出的长;②过分别作的垂线段,交于点,过点D作的垂线段,交于点I,根据,可得,即,证明,设,得到直线的解析式,求出点D的坐标,即可得到点的坐标,将点E的坐标代入解方程,即可解答.【详解】(1)解:根据抛物线的对称轴为,得,解得,将代入抛物线可得,抛物线的解析式为;(2)解:当时,得,解得,,,,设的解析式为,将,代入,得,解得,的解析式为,设,则,设的解析式为,将,代入,得,解得,的解析式为,联立方程,解得,根据,得,解得,,经检验,,是方程的解,点是该抛物线上位于第一象限的一个动点,在轴正半轴,,即的长为;②解:如图,过分别作的垂线段,交于点,过点D作的垂线段,交于点I,
,,,设,则,,,,,,,,即点D的横坐标为,,设的解析式为,将,,代入得,解得,的解析式为,,即,,四边形是矩形,,,即,将代入,得,解得,(舍去),.【点睛】本题为二次函数综合题,考查了待定系数法求二次函数和一次函数,二次函数与一元二次方程,两点之间的距离,相似三角形的判定与性质,正确的作出辅助线是解题的关键.13.(2023·全国·统考中考真题)如图,在平面直角坐标系中,抛物线经过点.点,在此抛物线上,其横坐标分别为,连接,.
(1)求此抛物线的解析式.(2)当点与此抛物线的顶点重合时,求的值.(3)当的边与轴平行时,求点与点的纵坐标的差.(4)设此抛物线在点与点之间部分(包括点和点)的最高点与最低点的纵坐标的差为,在点与点之间部分(包括点和点)的最高点与最低点的纵坐标的差为.当时,直接写出的值.【答案】(1);(2);(3)点与点的纵坐标的差为或;(4)或【分析】(1)待定系数法求解析式即可求解;(2)化为顶点式,求得顶点坐标,进而根据点的横坐标为,即可求解;(3)分轴时,轴时分别根据抛物线的对称性求得的横坐标与的横坐标,进而代入抛物线解析式,求得纵坐标,即可求解;(4)分四种情况讨论,①如图所示,当都在对称轴的左侧时,当在对称轴两侧时,当点在的右侧时,当的纵坐标小于时,分别求得,根据建立方程,解方程即可求解.【详解】(1)解:∵抛物线经过点.∴∴抛物线解析式为;(2)解:∵,顶点坐标为,∵点与此抛物线的顶点重合,点的横坐标为∴,解得:;(3)①轴时,点关于对称轴对称,,∴,则,,∴,∴点与点的纵坐标的差为;②当轴时,则关于直线对称,∴,则∴,;∴点与点的纵坐标的差为;综上所述,点与点的纵坐标的差为或;(4)①如图所示,当都在对称轴的左侧时,
则∴∵,即∴;∵∴解得:或(舍去);②当在对称轴两侧或其中一点在对称轴上时,
则,即,则,∴,解得:(舍去)或(舍去);③当点在的右侧且在直线上方时,即,
,∴解得:或(舍去);④当在直线上或下方时,即,
,,,解得:(舍去)或(舍去)综上所述,或.【点睛】本题考查了二次函数的性质,待定系数法求解析式,顶点式,熟练掌握二次函数的性质是解题的关键.14.(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,其中,.
(1)求该抛物线的表达式;(2)点是直线下方抛物线上一动点,过点作于点,求的最大值及此时点的坐标;(3)在(2)的条件下,将该抛物线向右平移个单位,点为点的对应点,平移后的抛物线与轴交于点,为平移后的抛物线的对称轴上任意一点.写出所有使得以为腰的是等腰三角形的点的坐标,并把求其中一个点的坐标的过程写出来.【答案】(1);(2)取得最大值为,;(3)点的坐标为或或【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线的解析式为,过点作轴于点,交于点,设,则,则,进而根据二次函数的性质即可求解;(3)根据平移的性质得出,对称轴为直线,点向右平移5个单位得到,,勾股定理分别表示出,进而分类讨论即可求解.【详解】(1)解:将点,.代入得,解得:,∴抛物线解析式为:,(2)∵与轴交于点,,当时,解得:,∴,∵.设直线的解析式为,∴解得:∴直线的解析式为,如图所示,过点作轴于点,交于点,
设,则,∴,∵,,∴,∵,∴,∴,∴,∴当时,取得最大值为,,∴;(3)∵抛物线将该抛物线向右平移个单位,得到,对称轴为直线,点向右平移5个单位得到∵平移后的抛物线与轴交于点,令,则,∴,∴∵为平移后的抛物线的对称轴上任意一点.则点的横坐标为,设,∴,,当时,,解得:或,当时,,解得:综上所述,点的坐标为或或.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.15.(2023·四川凉山·统考中考真题)如图,已知抛物线与轴交于和两点,与轴交于点.直线过抛物线的顶点.(1)求抛物线的函数解析式;(2)若直线与抛物线交于点,与直线交于点.①当取得最大值时,求的值和的最大值;②当是等腰三角形时,求点的坐标.【答案】(1);(2)①当时,有最大值,最大值为;②或或【分析】(1)利用待定系数法求解即可;(2)①先求出,进而求出直线的解析式为,则,进一步求出,由此即可利用二次函数的性质求出答案;②设直线与x轴交于H,先证明是等腰直角三角形,得到;再分如图3-1所示,当时,如图3-2所示,当时,如图3-3所示,当时,三种情况利用等腰三角形的定义进行求解即可.【详解】(1)解:∵抛物线与轴交于和两点,∴抛物线对称轴为直线,在中,当时,,∴抛物线顶点P的坐标为,设抛物线解析式为,∴,∴,∴抛物线解析式为(2)解:①∵抛物线解析式为,点C是抛物线与y轴的交点,∴,设直线的解析式为,∴,∴,∴直线的解析式为,∵直线与抛物线交于点,与直线交于点∴,∴,∵,∴当时,有最大值,最大值为;②设直线与x轴交于H,∴,,∴,∴是等腰直角三角形,∴;如图3-1所示,当时,过点C作于G,则∴点G为的中点,由(2)得,∴,∴,解得或(舍去),∴;如图3-2所示,当时,则是等腰直角三角形,∴,即,∴点E的纵坐标为5,∴,解得或(舍去),∴如图3-3所示,当时,过点C作于G,同理可证是等腰直角三角形,∴,∴,∴,∴,解得或(舍去),∴,,∴,∴综上所述,点E的坐标为或或【点睛】本题主要考查了二次函数综合,勾股定理,等腰直角三角形的性质与判断,一次函数与几何综合,待定系数法求函数解析式等等,利用分类讨论的思想求解是解题的关键.16.(2023·四川成都·统考中考真题)如图,在平面直角坐标系中,已知抛物线经过点,与y轴交于点,直线与抛物线交于B,C两点.
(1)求抛物线的函数表达式;(2)若是以为腰的等腰三角形,求点B的坐标;(3)过点作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得始终成立?若存在,求出m的值;若不存在,请说明理由.【答案】(1);(2)点B的坐标为或或;(3)存在,m的值为2或【分析】(1)利用待定系数法求解即可;(2)设,分和两种情况,分别根据等腰三角形性质和两点坐标距离公式列方程求解即可;(3)先根据题意画出图形,设抛物线与直线的交点坐标为,,联立抛物线和直线解析式,根据根与系数关系得到,,利用待定系数法分别求得直线、的表达式为得到,,过E作轴于Q,过D作轴于N,证明得到,整理可得到,进而求解即可.【详解】(1)解:∵抛物线经过点,与y轴交于点,∴,解得,∴抛物线的函数表达式为;(2)解:设,根据题意,是以为腰的等腰三角形,有两种情况:当时,点B和点P关于y轴对称,
∵,∴;当时,则,∴,整理,得,解得,,当时,,则,当时,,则,综上,满足题意的点B的坐标为或或;(3)解:存在常数m,使得.根据题意,画出图形如下图,
设抛物线与直线的交点坐标为,,由得,∴,;设直线的表达式为,则,解得,∴直线的表达式为,令,由得,∴,同理,可得直线的表达式为,则,过E作轴于Q,过D作轴于N,则,,,,若,则,∴,∴,∴,∴,则,整理,得,即,将,代入,得,即,则或,解得,,综上,存在常数m,使得,m的值为2或.【点睛】本题是二次函数的综合题,主要考查了待定系数法求函数的解析式、等腰三角形的性质、一元二次方程根与系数关系、相似三角形的判定与性质、解一元二次方程、坐标与图形等知识,综合性强,难度较大,熟练掌握相关知识的联系与运用,添加辅助线构造相似三角形,并利用数形结合和分类讨论思想解决问题是解答的关键.17.(2023·安徽·统考中考真题)在平面直角坐标系中,点是坐标原点,抛物线经过点,对称轴为直线.(1)求的值;(2)已知点在抛物线上,点的横坐标为,点的横坐标为.过点作轴的垂线交直线于点,过点作轴的垂线交直线于点.(ⅰ)当时,求与的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点,使得以为顶点的四边形的面积为?若存在,请求出点的横坐标的值;若不存在,请说明理由.【答案】(1);(2)(ⅰ);(ⅱ)【分析】(1)待定系数法求解析式即可求解;(2)(ⅰ)根据题意画出图形,得出,,,继而得出,,当时,根据三角形的面积公式,即可求解.(ⅱ)根据(ⅰ)的结论,分和分别求得梯形的面积,根据四边形的面积为建立方程,解方程进而即可求解.【详解】(1)解:依题意,,解得:,∴;(2)(ⅰ)设直线的解析式为,∵,∴解得:,∴直线,如图所示,依题意,,,,
∴,,∴当时,与的面积之和为,(ⅱ)当点在对称右侧时,则,∴,当时,,∴,∴,解得:,
当时,,∴,∴,解得:(舍去)或(舍去)
综上所述,.【点睛】本题考查了二次函数综合问题,面积问题,待定系数法求二次函数解析式,分类讨论,熟练掌握二次函数的性质是解题的关键.18.(2023·浙江金华·统考中考真题)如图,直线与轴,轴分别交于点,抛物线的顶点在直线上,与轴的交点为,其中点的坐标为.直线与直线相交于点.
(1)如图2,若抛物线经过原点.①求该抛物线的函数表达式;②求的值.(2)连接与能否相等?若能,求符合条件的点的横坐标;若不能,试说明理由.【答案】(1)①;②;(2)能,或或或.【分析】(1)①先求顶点的坐标,然后待定系数法求解析式即可求解;②过点作于点.设直线为,把代入,得,解得,直线为.同理,直线为.联立两直线解析式得出,根据,由平行线分线段成比例即可求解;(2)设点的坐标为,则点的坐标为.①如图2-1,当时,存在.记,则.过点作轴于点,则.在中,,进而得出点的横坐标为6.②如图2-2,当时,存在.记.过点作轴于点,则.在中,,得出点的横坐标为.③如图,当时,存在.记.过点作轴于点,则.在中,,得出点的横坐标为.④如图2-4,当时,存在.记.过点作轴于点,则.在中,,得出点的横坐标为.【详解】(1)解:①∵,∴顶点的横坐标为1.∴当时,,∴点的坐标是.设抛物线的函数表达式为,把代入,得,解得.∴该抛物线的函数表达式为,即.②如图1,过点作于点.
设直线为,把代入,得,解得,∴直线为.同理,直线为.由解得∴.∴.∵,∴.(2)设点的坐标为,则点的坐标为.①如图,当时,存在.记,则.∵为的外角,∴.∵.∴.∴.∴.过点作轴于点,则.在中,,∴,解得.∴点的横坐标为6.
②如图2-2,当时,存在.记.∵为的外角,∴.∴∴.∴.过点作轴于点,则.在中,,∴,解得.∴点的横坐标为.
③如图2-3,当时,存在.记.
∵,∴.∴.∴.∴.过点作轴于点,则.在中,,∴,解得.∴点的横坐标为.④如图2-4,当时,存在.记.∵,∴.
∴.∴.过点作轴于点,则.在中,,∴,解得.∴点的横坐标为.综上,点的横坐标为.【点睛】本题考查了二次函数综合运用,解直角三角形,平行线分线段成比例,熟练掌握以上知识,分类讨论是解题的关键.19.(2023·湖南·统考中考真题)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,.
(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由;(3)点是对称轴上一点,且点的纵坐标为,当是锐角三角形时,求的取值范围.【答案】(1);(2)或或;(3)或【分析】(1)待定系数法求解析式即可求解;(2)根据,可得到的距离等于到的距离,进而作出两条的平行线,求得解析式,联立抛物线即可求解;(3)根据题意,求得当是直角三角形时的的值,进而观察图象,即可求解,分和两种情况讨论,分别计算即可求解.【详解】(1)解:将点,代入,得解得:∴抛物线解析式为;(2)∵,顶点坐标为,当时,解得:∴,则∵,则∴是等腰直角三角形,∵∴到的距离等于到的距离,∵,,设直线的解析式为∴解得:∴直线的解析式为,如图所示,过点作的平行线,交抛物线于点,
设的解析式为,将点代入得,解得:∴直线的解析式为,解得:或∴,∵∴∴是等腰直角三角形,且,如图所示,延长至,使得,过点作的平行线,交轴于点,则,则符合题意的点在直线上,∵是等腰直角三角形,∴∴是等腰直角三角形,∴∴设直线的解析式为∴解得:∴直线的解析式为联立解得:或∴或综上所述,或或;(3)①当时,如图所示,过点作交于点,当点与点重合时,是直角三角形,当时,是直角三角形,
设交于点,∵直线的解析式为,则,∴,∵,∴是等腰直角三角形,∴∴,设,则∵∴解得:(舍去)或∴∵是锐角三角形∴;当时,如图所示,同理可得即∴解得:或(舍去)由(2)可得时,
∴综上所述,当是锐角三角形时,或.【点睛】本题考查了二次函数综合运用,面积问题,角度问题,熟练掌握二次函数的性质是解题的关键.20.(2023·四川遂宁·统考中考真题)在平面直角坐标系中,为坐标原点,抛物线经过点,,对称轴过点,,直线过点,且垂直于轴.过点的直线交抛物线于点、,交直线于点,其中点、Q在抛物线对称轴的左侧.
(1)求抛物线的解析式;(2)如图1,当时,求点的坐标;(3)如图2,当点恰好在轴上时,为直线下方的抛物线上一动点,连接、,其中交于点,设的面积为,的面积为.求的最大值.【答案】(1);(2);(3)【分析】(1)待定系数法求解析式即可求解;(2)过点作,垂足为根据已知条件得出,进而列出方程,解方程,即可求解;(3)先求得直线的解析式为,设,得出直线的解析式为,联立得出,根据等底两三角形的面积比等于高之比,得出,进而得出关于的二次函数关系,根据二次函数的性质即可求解.【详解】(1)解:∵抛物线经过点,,对称轴过点,,∴解得:∴抛物线解析式为;(2)解:如图所示,过点作对称轴的垂线,垂足为,
设,则,∵,∴,∵,∴,解得:或,∵其中点在抛物线对称轴的左侧.∴,∴,设直线的解析式为,∴,解得:,∴直线的解析式为,联立,解得:或,∴;(3)解:依题意,点恰好在轴上,则,设直线的解析式为,将代入得,解得:,∴直线的解析式为,设,设直线的解析式为,则,∴直线的解析式为,联立,解得:,∴,∴,∴当时,取得最大值为.【点睛】本题考查了二次函数综合问题,平行线分线段比例,面积问题,待定系数法求解析式,熟练掌握二次函数的性质是解题的关键.21.(2023·四川眉山·统考中考真题)在平面直角坐标系中,已知抛物线与x轴交于点两点,与y轴交于点,点P是抛物线上的一个动点.
(1)求抛物线的表达式;(2)当点P在直线上方的抛物线上时,连接交于点D.如图1.当的值最大时,求点P的坐标及的最大值;(3)过点P作x轴的垂线交直线于点M,连接,将沿直线翻折,当点M的对应点恰好落在y轴上时,请直接写出此时点M的坐标.【答案】(1);(2)点P的坐标为;的最大值为;(3)点M的坐标为:,【分析】(1)利用待定系数法求出抛物线的解析式即可;(2)过点P作轴,交于点Q,求出直线的解析式为,设点P的坐标为,则点,得出,根据轴,得出,根据,求出点P的坐标和最大值即可;(3)证明,得出,设,,得出,,根据,得出,求出或或,根据当时,点P、M、C、四点重合,不存在舍去,求出点M的坐标为,.【详解】(1)解:把,代入得:,解得:,∴抛物线的解析式为.(2)解:过点P作轴,交于点Q,如图所示:
设直线的解析式为,把,代入得:,解得:,∴直线的解析式为,设点P的坐标为,则点,∵点P在直线上方的抛物线上,∴,∵轴,∴,∴∵,∴,∴当时,有最大值,此时点P的坐标为.(3)解:根据折叠可知,,,,∵轴,∴,∴,∴,
∴,设,,,,∵,∴,∴,整理得:,∴或,解得:或或,∵当时,点P、M、C、四点重合,不存在,∴,∴点M的坐标为,.
【点睛】本题主要考查了求抛物线的解析式,二次函数的综合应用,平行线分线段成比例定理,等腰三角形的判定,平行线的性质,两点间距离公式,解题的关键是数形结合,作出辅助线或画出图形.22.(2023·江西·统考中考真题)综合与实践问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,到达点A时停止,以为边作正方形设点P的运动时间为,正方形的而积为S,探究S与t的关系
(1)初步感知:如图1,当点P由点C运动到点B时,①当时,_______.②S关于t的函数解析式为_______.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段的长.(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.①_______;②当时,求正方形的面积.【答案】(1)①3;②;(2),;(3)①4;②【分析】(1)①先求出,再利用勾股定理求出,最后根据正方形面积公式求解即可;②仿照(1)①先求出,进而求出,则;(2)先由函数图象可得当点P运动到B点时,,由此求出当时,,可设S关于t的函数解析式为,利用待定系数法求出,进而求出当时,求得t的值即可得答案;(3)①根据题意可得可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,由此可得,则,根据题意可以看作,则;②由(3)①可得,再由,得到,继而得答案.【详解】(1)解:∵动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,∴当时,点P在上,且,∵,,∴,∴,故答案为:3;②∵动点P以每秒1个单位的速度从C点出发,在匀速运动,∴,∵,,∴,∴;(2)解:由图2可知当点P运动到B点时,,∴,解得,∴当时,,由图2可知,对应的二次函数的顶点坐标为,∴可设S关于t的函数解析式为,把代入中得:,解得,∴S关于t的函数解析式为,在中,当时,解得或,∴;(3)解:①∵点P在上运动时,,点P在上运动时,∴可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,∴,∴,∵存在3个时刻()对应的正方形的面积均相等.∴可以看作,∴,故答案为:4;②由(3)①可得,∵,∴,∴,∴.
.【点睛】本题主要考查了二次函数与图形运动问题,待定系数法求函数解析式,勾股定理等等,正确理解题意利用数形结合的思想求解是解题的关键.23.(2023·新疆·统考中考真题)【建立模型】(1)如图,点是线段上的一点,,,,垂足分别为,,,.求证:;【类比迁移】(2)如图,一次函数的图象与轴交于点、与轴交于点,将线段绕点逆时针旋转得到、直线交轴于点.①求点的坐标;②求直线的解析式;【拓展延伸】(3)如图,抛物线与轴交于,两点点在点的左侧,与轴交于点,已知点,,连接.抛物线上是否存在点,使得,若存在,求出点的横坐标.
【答案】(1)见解析;(2)①;②直线的解析式为;(3)或【分析】[建立模型](1)根据题意得出,,证明,即可得证;[类比迁移](2)①过点作轴于点,同(1)的方法,证明,根据一次函数的图象与轴交于点、与轴交于点,求得,,进而可得点的坐标;②由,设直线的解析式为,将点代入得直线的解析式为;[拓展延伸](3)根据解析式求得,;①当点在轴下方时,如图所示,连接,过点作于点,过点作轴于点,过点作,于点,证明,根据得出,设,则,求得点,进而求得直线的解析式,联立抛物线解析式即可求解;②当点在轴的上方时,如图所示,过点作,于点,过点作轴,交轴于点,过点作于点,同①的方法即可求解.【详解】[建立模型](1)证明:∵,,,∴,∴,∴,又∵,∴;[类比迁移](2)如图所示,过点作轴于点,
∵将线段绕点逆时针旋转得到,∴,又,∴,∴,∴,∵一次函数的图象与轴交于点、与轴交于点,当时,,即,当时,,即,∴,∴,∴;②∵,设直线的解析式为,将代入得:解得:∴直线的解析式为,(3)∵抛物线与轴交于,两点点在点的左侧,当时,,解得:,∴,;①当点在轴下方时,如图所示,连接,过点作于点,过点作轴于点,过点作,于点,
∵,∴,∴,∴,∵,∴,设,则,∵,∴,,∵,,∴,解得:,∴,设直线的解析式为,代入,得:,解得:,∴直线解析式为,联立,解得:(舍去),;②当点在轴的上方时,如图所示,过点作于点,过点作轴,交轴于点,过点作于点,
同理可得,∴,设,则,∵,∴,,∵,∴,解得:,∴,设直线的解析式为,代入,得:,解得:,∴直线的解析式为,联立,解得:(舍去),,综上所述,的横坐标为或.【点睛】本题考查了二次函数综合运用,待定系数法求一次函数解析式,相似三角形的性质与判定,全等三角形的性质与判定,旋转的性质等知识
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度广告投放与宣传推广合同
- 《基于DEA的档案类微信公众号传播效果评价研究》
- 《山东钢铁资产剥离的绩效研究》
- 《楚墓出土漆耳杯纹饰研究》
- 2024年度个人融资合同样本
- 《铜离子印迹交联壳聚糖的制备及其吸附性能研究》
- 《新型牙体修复性纳米羟基磷灰石复合树脂的粘结性能研究》
- 《基于HAZOP和过程模拟的化工工艺安全性分析及优化》
- 必刷08 植物生命活动的调节(共50题)
- 白酒批量订货协议规范(2024年)
- 中图版八年级地理上册《世界气候》复习课件
- 无损检测通用作业指导书
- 2023年中考语文复习:150个文言实词-课件(共183张PPT)
- 车辆维修服务方案先进性
- 2020年1月上海春招英语听力(含试题、MP3、答案及录音)
- GB/T 17639-2023土工合成材料长丝纺粘针刺非织造土工布
- 发行企业债法律尽职调查之访谈问题清单
- 拍卖合作协议
- 白改黑施工组织设计
- ICU患者失禁性皮炎的预防及护理新进展
- 半导体工艺 掺杂原理与技术
评论
0/150
提交评论