版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/84
Abstract
Massiveaccesstechnologyreferstothetechnologiesdevelopedtoaddressthechallengeofaccommodatingextensiveconnectivity.6Gsetshigherdemandsforconnectiondensity,specificallytargetingscenarioswithmassiveconnections.Theenvisionedconnectiondensityfor6Gistensofmillionsofterminalspersquarekilometer.6GcanbringaboutafullydigitalsocietybyintegratingInternetofEverything(IoE),allowingindividualstoengageinnatural,inspiring,andpervasiveinteractionswiththeirsurroundings.Eachindividualisanticipatedtoactivatetenstohundredsofterminalsconnectedtothe6Gnetwork,withtheinteractioncycleformachine-typeterminalsexpectedtodecreasefrom1dayor2hoursin5Gtomereseconds.Inthecontextof6G,thereareincreaseddemandsforlowlatency,particularlyforthesporadictransmissionofsmallpacketsbymachine-typeterminals.ThisnecessitatesafurtherreductioninthedelayfrominitialaccesstoestablishingaRadioResourceControl(RRC)connection,
aimingtoachievesimplifiedaccessprocedures.
6GadvancestheMassiveMachineTypeCommunications(mMTC)scenariobyintroducingtheMassiveCommunicationscenario,whichinvolvesapotentiallyenormousnumberofaccessterminals,reachinguptotensofmillionspersquarekilometer.Additionally,inthecontextof6G,theImmersiveCommunicationandHyperReliableandLow-LatencyCommunication(HRLLC)scenariosstemmingfromEnhancedMobileBroadband(eMBB)andUltra-ReliableLow-LatencyCommunications(URLLC)scenariosbringforthincreaseddemandsforindicatorssuchasconnectiondensityandlatency.Tosatisfythesedemands,
extensiveresearchintomassiveaccesstechnologyisessential.
Thiswhitepaperaimstolayouttheframeworkofmassiveaccesstechnology,investigateitsapplicationscenariosanddemands,pinpointandillustratethetechnicalproblemsthatneedtobefixed,offerapathforwardtosolvetheseproblems,andsuggestspecifictechnicalfixes.Firstly,itexaminesthemanyapplicationsofmassiveaccesstechnologyandoutlinestherequirementsforindicatorslikeconnectiondensity,latency,datatransmissionfrequency,anddatapacketsizeineachapplication.Itthenexaminesthe
requirementsformassiveaccesstechnology,includingenhancingconnectiondensity,
2/84
decreasingcommunicationlatency,andoptimizingcommunicationprocesses,inconjunctionwiththeparticularrequirementsofusecases.Itthenturnstostudythekeytechnologiesforenablingmassiveaccess,explorestheindustry'sprevailingtechnicalapproachofUnsourcedMultipleAccess(UMA),andsuggestsUncoordinatedRandomAccessandTransmission(URAT)technology,efficientconnectionlesstransmissiontechnology,sparseInterleaveDivisionMultipleAccess(IDMA)forUMA,andmulti-userencodinganddecodingschemesbasedonOn-OffDivisionMultipleAccess(ODMA).Basedonthis,itrefinesthedesignschemesfortransmittersandreceiversandpresentsresourcehopping,patterndivisionrandomaccess(PDRA),andVirtualUserSplittingasthefoundationformultipleaccessschemes;iterativereceiversbasedonSparsificationTransformation;capacity-optimizedandlow-complexityiterativereceivers;andmulti-userencodingschemes.Finally,itintegratesandcategorizestheproposedkeytechnologies,refiningthemtocreateatechnicalroadmap
forenablingmassiveaccess.
3/84
Contents
1.Introduction(CICTMobile)
4
2.ApplicationScenariosofMassiveAccessTechnology(CICTMobile,ChinaUnicom)
7
3.ImportantUseCases
1
0
3.1ToCDigitalTwinWorld(CICTMobile)
1
0
3.2CriticalConnection-IntensiveIoV(ZTE,CICTMobile)
1
2
3.3Ultra-Low-PowerIoT(vivo)
1
4
4.BasicRequirements(CICTMobile)
1
7
5.CommunicationProcessofMassiveConnections(CICTMobile,vivo)
1
9
6.KeyTechnologiesforEnablingMassiveAccess
2
4
6.1UMASchemes
2
5
6.1.1URAT(CICTMobile)
2
5
6.1.2EfficientConnectionlessTransmission(ZTE)
2
7
6.1.3Multi-UserEncodingandDecodingSchemesBasedonODMA(XDU)
4
2
6.1.4SparseIDMAforUMA(ChinaMobile)
4
5
6.2TransmitterDesignSchemes
5
1
6.2.1MultipleAccessSchemeBasedonVirtualUserSplitting(DOCOMO)
5
1
6.2.2MultipleAccessSchemeBasedonResourceHopping(BJTU)
5
5
6.2.3PDRA(USTB)
5
9
6.3ReceiverDesignSchemes
6
2
6.3.1IterativeReceiverBasedonSparsificationTransformation(USTB)
6
2
6.3.2Capacity-OptimizedandLow-ComplexityIterativeReceiverandMulti-UserEncoding
Scheme(XDU,ZJU)
6
6
7.TechnicalRoadmap(CICTMobile)
7
2
8.ConclusionandOutlook(CICTMobile)
7
7
References
7
9
ContributingUnit
8
2
AbbreviationsandAcronyms
8
3
4/84
1.Introduction(CICTMobile)
AsemergingtechnologieslikeIoTandAIrapidlyadvance,thedemandforcommunicationtechnologiesisalsoontherise.Thearrivalof5Gtechnologyhasgivenpeopleaccesstofaster,morestable,andmorereliablecommunicationservices.However,asthenumberofIoTdevicescontinuestorise,accommodatingthemassiveinfluxofdeviceshasemergedasapivotalchallengeintoday'scommunicationlandscape.Traditionalcommunicationtechnologiesarenolongercapableofmeetingtheaccessdemandsimposedbythisvastvolumeofdevices.Therefore,investigatinganddevelopingmassiveaccesstechnologyhasemergedasacrucialfocalpointintheeraof6G.
Presently,numerousstandardizationorganizationsareactivelyengagedin6Gresearchandhavemadesubstantialadvancementsinnovelmultipleaccesstechnologies.Forexample,ITUhasexaminedanapplication-orienteddynamicaccessschemethat,withinanoverarchingframework,employsdiversemultipleaccessschemestailoredtospecificapplicationscenarios.Thisfacilitatesthepotentialconvergenceofdifferentmultipleaccessschemesandsupportsthestandardizedadvancementofnewmultipleaccesstechnologies.TheIMT2030(6G)PromotionGrouphasreachedaconsensusontechnicalconcepts,researchprogress,challenges,andresearchdirections.Thescopeofresearchencompassesfundamentaltransmissionmethodsatthetransmittingendandthesignalprocessingprocessatthereceivingend,providingaguidingframeworkforfutureresearchonnewmultipleaccesstechnologies.Thisfacilitatestheresolutionofoutstandingissuesandtheattainmentofsignificantbreakthroughs.InNovember2022,acrucialtechnicalresearchreportwasissued,introducingthepotentialofmassiveaccesstechnologywithoutuseridentificationbasedonNon-OrthogonalMultipleAccess(NOMA)togreatlyenhanceterminalconnectiondensity.Thisadvancementoffersrobustsupportfor6Gscenariossuchaslowpowerconsumptionandultra-large-scaleconnectivityandservesasthegroundworkforthoroughexplorationintophysicallayerairinterfacetechnology.FuTUREForumissuedtheWhitePaperon6GVisionandTechnologyTrends[1]in2020andtheWhitePaperontheEvolvedRandomAccessandMultipleAccessTransmissionTechnologies[2]in2022.Thesedocumentscovergrant-freetechnology,whichdoesnotnecessitatefullnetworkcoordination,andalsointroduceadesignapproachforintegratingrandomaccessandmultipleaccesstransmissiontechnologies.Inlarge-scaleconnectionscenarios,6GFlagshipemphasizesthesignificanceofNOMAasakeytechnology.Ithighlightstheneedtoaddresschallengesassociatedwithuseractivitydetectionanddatadecoding,whilealsoproposingresearchonNOMAtechnologythatoperateswithoutthenecessityforfullcoordination.
Meanwhile,therehavebeensignificantadvancementsintheacademicfieldofNOMAtechnology,leadingtotheintroductionofmassiveaccesstechnology[3].Allterminalsencodeinformationsequencesusingthesamecodebook,andthecodedbitsarethentransmittedoversharedresourcesusingSlottedALOHAaftermodulation.ItsprimarycharacteristicisthelackofnecessitytoallocateterminalIDsfortransmission,leadingtoitsdesignationasunsourcedoruncoordinatedmultipleaccess,whichhasemergedasaprominentresearchfocusinacademiccircles.Recently,academicresearchhasextensivelyexplorednovelmultipleaccesstechnologiesfor6G.ThereisawidespreadconsensusthatmMTCrepresentsapivotal
5/84
scenariofor6G,requiringenhancedperformanceindicatorsbeyondthoseof5G.Consequently,theintroductionofinnovativemultipleaccesstechnologiesbecomesessentialtotackletheensuingchallenges.Intacklingsignificantchallengessuchaspilot/preambledesign,channelestimation,andmulti-useractivitydetection,manystudieshaveincorporatedtechnologieslikecompressedsensing,multi-userencoding,anddeeplearningtoproposesolutionssuchasUnsourcedRandomAccess(URA)andUMA.ThecoreconceptofURAliesinitsabilitytoenableconcurrentaccessanddatatransmissionwithoutrequiringcoordinatedschedulingoraseparateaccessprocess,thussimplifyingtheaccessprotocolandreducingsignalingoverhead.Widelyrecognizedastheprevailingmultipleaccessschemein6Gacademicresearch,itformsthebasisforthemajorityofmultipleaccessinvestigations.TheURAschemecurrentlyproposedinacademiccirclescanbeprimarilycategorizedintotwotypes.Onetypeinvolvestheuseofconcatenatedinnerandoutercodestotransmitpilotsanddataconcurrently,therebyintegratingtheaccessanddatatransmissionprocesses.Theothertypeemphasizesreducingthecouplingbetweeninnerandoutercodes.Theconcatenationofinnerandoutercodesoftennecessitatesadditionalredundantinformation,leadingtoadecreaseinspectralefficiency.Therefore,thisschemeprimarilyreliesonspecificcorrelatedinformation,suchasspatialandchannelcorrelations,toeliminateconnectioncoding.
Thiswhitepaperaimstoexploretheresearchanddevelopmentofmassiveaccesstechnologyinthe6Gera.Itseekstoestablishacomprehensiveframeworkforthistechnology,encompassingapplicationscenarios,technicalrequirements,keychallenges,viabletechnicalroadmaps,andseveralpivotaltechnologies.Ultimately,itaimstoprovidestrongsupportfortheadvancementof6Gtechnology.Chapter2outlinesthetwoprimaryapplicationscenariosofmassiveaccesstechnology,tailoredtovaryingtrafficmodelandperformanceindicators.Chapter3detailstheimportantusecasesofmassiveaccesstechnologyin6G,includingtheToCdigitaltwinworld,thecriticalconnection-intensiveIoV(InternetofVehicles),andultra-low-powerIoT(InternetofThings).Chapter4analyzestherequirementsformassiveaccesstechnologyin6Gbasedonscenariousecases,focusingonindicatorslikeconnectiondensity,latency,andterminaldatatransmissionfrequency,andaimingtoreducelatencybysimplifyingcommunicationprocessesandenhancingconnectiondensitythroughoptimizedtechnicalsolutions.Chapter5outlinesthecommunicationprocessformassiveconnections,encompassingsimplifiedsecurityandtransmissionmechanisms.Chapter6thoroughlyexaminestheprimarychallengesandexploreskeytechnologiestofulfillthesedemands.TheseencompassURAT,efficientconnectionlesstransmissiontechnology,multi-userencodinganddecodingschemesbasedonODMA,sparseIDMAforUMA,multipleaccessschemesbasedonresourcehoppingandVirtualUserSplitting,PDRA,iterativereceiversbasedonSparsificationTransformation,capacity-optimizedandlow-complexityiterativereceivers,andmulti-userencodingschemes.Chapter7offersaforward-lookingperspectiveontechnologicalevolutiontoshapetheroadmapforfuturemassiveaccesstechnology.Thisencompassesnon-orthogonal,uncoordinated,integratedrandomaccessandmultipleaccesstransmission,andconsiderationsforreceiverdesign.Chapter8concludesandprovidesafutureoutlook.
Thiswhitepaperholdsvitalsignificanceindrivingtheresearchanddevelopmentofmassiveaccesstechnologyintheeraof6G.Firstly,thiswhitepaperintroducesthe
6/84
fundamentalframeworkanduniversalrequirementsofmassiveaccesstechnology,offeringguidanceandreferenceforfutureresearch.Next,thiswhitepaperprovidesadetailedoverviewofthekeytechnicalsolutionsformassiveaccesstechnology,offeringinsightsandguidanceforresearchinrelevantfields.Finally,thiswhitepaperextensivelydeliberatesonthedemandchallengesandtheircorrespondingtechnicalroadmaps,establishingaconsensusandgroundworkforfutureendeavors.Webelievethat,throughcollectiveendeavors,massiveaccesstechnologywillprogressandcontributesignificantlytotheIoTandassociatedfields,establishingthegroundworkforanadvancedintelligentsocietyanddeliveringincreasedconvenienceandinnovationtopeople'slives.
7/84
2.ApplicationScenariosofMassiveAccessTechnology(CICT
Mobile,ChinaUnicom)
6Gisexpectedtodemonstrateanotablysubstantialincreaseinconnectiondensitycomparedto4Gand5G.While4Gboastsaconnectiondensityof2,000connectionspersquarekilometerand5Greachesonemillionconnectionspersquarekilometer,theprevailingindustryexpectationisthat6Gwillachieveastaggeringtenmillionconnectionspersquarekilometerorpossiblyevenhigher.Inmassiveconnectionscenarios,adiverserangeofterminaldevicetypesisanticipated.AlongsidetraditionalIoTdevices,theintroductionofnovelunsourced,low-powerterminaldevicesisexpected.
InJune2023,theITUfinalizedaproposal[4]outliningtheframeworkandoverallgoalsforIMT's2030andfuturedevelopment,andintroducedsixprimaryapplicationscenariosfor6G.Ontheonehand,itevolvedtheeMBB,mMTC,andURLLCscenarioswithin5G,presentingImmersiveCommunication,MassiveCommunication,andHRLLCscenarios.Ontheotherhand,itexpandedupontheexisting5GscenariostoproposeUbiquitousConnectivity,IntegratedArtificialIntelligenceandCommunication,andIntegratedSensingandCommunicationscenarios.
MassiveCommunicationscenariosencompassawiderangeofapplications,suchassmartcities,transportation,logistics,healthcare,energy,environmentalmonitoring,agriculture,andmanyotherfields.Theseapplicationsfrequentlyrequiresupportforavarietyofbattery-freeorlong-life-batteryIoTdevices.Highconnectiondensityisrequiredforsuchscenarios,andthedocumentproposesadensityrequirementrangingfrom106to108devicespersquarekilometer.Additionally,tailoredtospecificusecases,thereisarequirementtoaccommodatevaryingdatarates,powerconsumption,mobility,andcoveragerange,aswellasconsiderationsforsecurityandreliability.
Inexistingtechnology,terminalsmustestablishnetworkaccessbeforeinitiatingdatatransmission.Thenumberofterminalsthatcanbesupportedislimitedbydatatransmissionresourcesandcoordinatedsignalingresourcesofthenetwork.ForMassiveCommunicationin6G,connectiondensityisrequiredatamuchhigherlevelthanin5G,possibly100timeshigher.Comparedto5G,6Gscenarioswillsupportawiderrangeoftypicalusecasesandterminaldevicetypes,placingadditionaldemandsonthetrafficmodel.Forexample,therewillbeanincreaseintheterminaldatatransmissionfrequency.Onemessageperdeviceeverytwohoursistherecommendedterminaldatatransmissionfrequencyunderthe5GmMTCtrafficmodel[5].AccordingtotheIMT-2030(6G)PromotionGroup,terminaldatatransmissionfrequencyinultra-large-scaleconnectionscenariosmightbeaslowasonceadayorashighasonceeveryfewmilliseconds[6].Thereisagreaterneedforconcurrentuseraccesswithinaparticularperiodoftimeduetotheincreaseinterminalquantityanddatatransmissionfrequency.Itisexpectedtosupportsimultaneousaccessofhundredsofterminalspermillisecond.Thechallengethatneedstobeovercomeissupportingcommunicationformassiveterminalswhilestayingwithinthelimitsofnetworksignalinganddatatransmissionresources.Therefore,itisessentialtoexploremassiveaccesstechnologytoaccommodatea
8/84
greaternumberofterminalconnections.
MassiveCommunicationscenariosputforwardhigherrequirementsforconnectiondensity,whiletherequirementforlowlatencyisusuallylessstrictandcanoftentoleraterelativelyhighlatency,enablingend-to-endcommunicationtobeachievedwithinmereseconds.Inpracticalapplications,itisimportanttoconsidernotonlythenumberofsupportedterminals,butalsothedatapacketsize,end-to-endcommunicationlatency,andthereliabilityofdatatransmission.Insomecases,therequiredconnectiondensityislessthanthatofMassiveCommunicationscenarios,whichcallfor108devicespersquarekilometer.Itissufficienttohaveabout106devicespersquarekilometer.However,applicationssuchasIoVandsmartfactoriesrequiremillisecond-levelend-to-endcommunicationlatency.Furthermore,insomeapplicationscenariossuchasdigitaltwins,largerdatapacketsizesarerequired.Examplesoftheseincludethetransferofpacketsofhundredstothousandsofbytes.Onthebasisofmeetinghigherlatencyrequirementsandlargertransmissionpackets,furthersupportingtheaccessofmassiveterminalsfacessignificantchallenges.Therefore,thereisanimperativeneedtoconductresearchonmassiveaccesstechnologycapableofmeetinghighlatencyrequirementsandfacilitatinglargerdatapackettransmissions.
Accordingtodifferenttrafficmodelandindicatorrequirements,theapplicationscenariosofmassiveaccesstechnologycanbedividedintotwocategories:onetypeisMassiveCommunication,whichrequiressupportforalargenumberofterminals(e.g.,108devices/km2),isnotsensitivetolatency,usuallytransmitsburstysmalldatapackets,andhashighdemandsforconnectiondensitybutlowrequirementsfordatatransmissionfrequency,latency,datapacketsize,andreliability,asindicatedbytheorangecurveinFigure2-1.Theothertypeisthescenariothatsupportsalargenumberofterminals(e.g.,106devices/km2)whileplacinghigherdemandsonthesizeoftransmitteddatapackets,end-to-endcommunicationlatency,anddatatransmissionreliability.ThisscenariointegratesthecharacteristicsofMassiveCommunication,ImmersiveCommunication,andHRLLCscenarios,representingacombinationofthesethreescenarios,withitskeyindicatorcapabilitiesshownbythebluecurveinFigure2-1.Ithaslowerrequirementsforconnectiondensitycomparedtothefirsttypeofapplicationscenario,buthigherrequirementsfordatatransmissionfrequency,latency,datapacketsize,andreliability.
Figure2-1ApplicationScenariosofMassiveAccessTechnology
Massiveaccesstechnologyenablestheconnectionofmassiveterminals,meetingthe
9/84
demandsofthementionedscenarios.Ontheonehand,itcansatisfythe6Grequirementsforlatency,connectiondensity,andotherindicators.Ontheotherhand,inusecaseslikedigitaltwinsandultra-low-powerIoTthatnecessitatethedeploymentofmassivedevices,massiveaccesstechnologycanbeemployedasanunderlyingtechnologytosupportterminalaccessanddatatransmission.
10/84
3.ImportantUseCases
3.1ToCDigitalTwinWorld(CICTMobile)
Byintegratingsensing,computing,modeling,simulation,andcommunicationtechnologies,digitaltwinenablesreal-timeinteractionandseamlessconnectionbetweenthephysicalanddigitalworlds.Itsextensiveapplicationsspanacrossintelligentmanufacturing,smartcities,smartagriculture,andhealthcare[7].Digitaltwinpresentsmanychallengesforthearchitectureandcapabilitiesof6Gnetworks,demandingsubstantialdeviceconnections,highthroughput,low-latencytransmission,andmore.Thisisessentialfortheprecisereal-timecaptureofsubtlechangesinthephysicalworldandthetransmissionofinteractioninformation.Forexample,thefollowingtechnicalspecificationsmustbemet:connectiondensityof107–108devicespersquarekilometer,airinterfacelatencyoflessthan1ms,transmissionratesrangingfromMbpstoGbps,anderrorprobabilityoflessthan10-5[6].
Digitaltwiniswidelyusedonboththeconsumerside(C-end)andindustrialside(B-end),stimulatingcreativeactivitiesandcommunicationinthevirtualworld,whileenhancingindividuals'understandingofthelawsgoverningthephysicalworld.TheToCdigitaltwinworldexpandsuponthephysicalanddigitalworldsbyintroducingahuman-centricdimensionencompassingsensoryperception,physicality,intellect,andvalues.Thisintegrationfacilitatesinteractiveinformationexchangeamongthesethreeworlds,withafocusondeliveringpersonalized,real-time,andimmersiveexperiencesforindividuals.Itischaracterizedbyall-inclusiveconnectivity,real-timequality,andaccuracy.
Figure3-1ToCDigitalTwinWorld
Using"ImmersiveTouroftheForbiddenCity"asanexample,thefollowingillustratesthetypicalfeaturesoftheToCdigitaltwinworld:
.Personalizedexperience:ByconstructingaToCdigitaltwinworldoftheForbiddenCity,thevirtualscenerymaybeadjustedtovisitors'owntastes,improvingtheviewingexperience.Toprovidevisitorswithpersonalizedexperiences,itneedsa
11/84
highconnectiondensity—106devices/km2.
.Realtimeexperience:Thevirtualscenerymustseamlesslyintegratewiththearchitectureandculturalrelics,providingreal-timepresentationtovisitorsforaseamlessfusionofthevirtualandthephysical.Thisrequiresstringentlatencytoachievemillisecond-levelend-to-endcommunication.
.Immersiveexperience:Likethemixedreality(MR)effect,thistechniquerestoresanddisplaysthepalace'sgrandeur,coloraesthetics,historicalrelevance,andotherelementsbysuperimposinggenuinebuildingsandculturalrelicsontovirtualscenery.Thisprovidesvisitorswithanincrediblyimmersiveexperience.Toproduceacompletelyimmersiveexperience,hundredstothousandsofbytesofdatapacketsmustbetransferred.
Comparedto5G,6Ghassignificantdifferencesandhigherrequirementsintermsofimmersiveexperience.6Gwillprovidehigherperformanceintransmissionspeed,networklatency,connectiondensity,andreliability.
•Transmissionspeed:While5Gaimsforatransmissionspeedof20Gbps,6Gisprojectedtoreach1Tbps,whichwillmaketheimmersiveexperiencesmootherandmorerealistic.
•Networklatency:6Gisexpectedtoachieveultra-lowlatencyaslowas1ms.Comparedtothelatencyof1-10msin5G,itwillgreatlyimprovetheperformanceofreal-timeinteractioninimmersiveexperiencesandreducetheimpactoflatencyonuserexperience.
•Connectiondensity:Theconnectiondensitysupportedby5Gis1millionconnectionspersquarekilometer,and6Gisexpectedtosupport10millionconnectionspersquarekilometer.Thismeansthat6Gwillbeabletoprovidehigherqualityimmersiveexperiencesinhighconnectiondensityscenarios.
•Reliability:Tomeettherequirementsofimmersiveexperiences,6Gisprojectedtomakesignificantadvancementsinreliability.Forexample,itaimstoprovide99.9999%servicereliabilityforcriticaltasksandreal-timeinteractiveapplications.
Table3-1illustratestheestimatedtrafficmodelforthisusecase,includingtheterminaldevicetype,terminaldevicequantity,andstatusreportingfrequency.
Table3-1TrafficmodelforImmersiveTouroftheForbiddenCity
TerminalDevice
Type
TerminalDeviceQuantity
Status
ReportingFrequency
Terminal
Quantity
perSecond
EstimationBasis
Tourists'smartdevices
104~105
About1/min
103~104
NumberofvisitorstotheForbiddenCity
Buildingprotection
sensor
104~105
About1/min
103~104
UsecasesinTR22.840
12/84
Culturalrelicdisplaysensor
104~105
About1/min
103~104
NumberofculturalrelicsondisplayintheForbidden
City
Realenvironment
sensingand
imagingdevices
103~104
About1/s
103~104
AreaoftheForbiddenCity
Culturalrelic
storagesensor
105~106
About1/hour
103~104
UsecasesinTR22.011
Total(numberofterminalsaccessedand
transmittedpersecond)
104~105
Approximateestimationresults
TheToCdigitaltwinworldprioritizesthehumanexperience.Itaimstodeliverpersonalized,real-time,andimmersiveexperiencestailoredtouserneedsbysupportingmassivedevicecommunication.ComparedtotheMassiveCommunicationscenario,higherrequirementsareplacedondatatransmissionlatencyandpacketsize.Thisentailssupportingaconnectiondensityofapproximately106devices/km2,facilitatingcommunicationfromhundredsofterminalspermillisecond,andensuringmillisecond-levelend-to-endlatency.Additionally,acrossvarioususecases,thepacketsizesvaryfromhundredstothousandsofbytes.Theexistingmethodofestablishingaconnectionbeforedatatransferleadstosubstantialtransmissionlatency,impactinguserexperiencewithintheToCdigitaltwinworld.Therefore,itisnecessarytoexploremassiveaccesstechnology,simplifythesignalinginteractionfrominitialaccesstomultipleaccesstransmission,andreducelatency.
3.2CriticalConnection-IntensiveIoV(ZTE,CICTMobile)
High-densityIoVinformationtransmissionexhibitsbothmassivenessandburstiness,thusnecessitatinglowlatencyandhighreliability.Meetingtherequirementsforlowlatencyandhighreliabilityinscenariosofmassiveandburstyinformationtransmissionposesaconsiderablechallenge.Moreover,therapidmovementofvehiclenodesresultsinswiftchangesinthenetworktopologyoftheIoV,makingitevenmorechallengingtosimultaneouslymeettherequiremen
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度教育培训合同:培训机构为学员提供教育培训服务的协议3篇
- 基于2024年度市场需求的广告推广代理合同
- 二零二四年度版权转让合同:某音乐制作人将其原创作品版权转让给某唱片公司3篇
- 2024至2030年中国微机控制电子式扭转试验机行业投资前景及策略咨询研究报告
- 2024版租赁合同(含土地租赁)3篇
- 2024至2030年中国柔丝特润玉手霜数据监测研究报告
- 2024至2030年静止半导体变频电源项目投资价值分析报告
- 2024至2030年铸铝不粘汤锅项目投资价值分析报告
- 2024至2030年透明亚克力纽扣项目投资价值分析报告
- 2024版股权转让合同范本及其附属协议2篇
- 消防论文范文10篇
- 论中国特色社会主义经济建设
- 比亚迪宋PLUS EV说明书
- 住宅项目建设总投资概算表
- 铁路线路工道口故障处理作业指导书
- 陕北窑洞民居
- 中队长、小队长职责
- 口腔医学主治医师考试题库与答案
- 胸痛时间管理表
- 更换普通道岔基本轨作业指导书(普速)
- 华西口腔修复学教学大纲
评论
0/150
提交评论