2024 全球6G技术大会 -10.0E Edge-Native Intelligence White Paper_第1页
2024 全球6G技术大会 -10.0E Edge-Native Intelligence White Paper_第2页
2024 全球6G技术大会 -10.0E Edge-Native Intelligence White Paper_第3页
2024 全球6G技术大会 -10.0E Edge-Native Intelligence White Paper_第4页
2024 全球6G技术大会 -10.0E Edge-Native Intelligence White Paper_第5页
已阅读5页,还剩231页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/123

Abstract

Edgecomputing,asakeytechnologyofthenextgenerationofradioaccess

networks(RAN),hasdriventhedecentralizationofnetworksandcomputingfacilities.Edgeserversclosertouserterminalscansignificantlyreduceservicelatencyandcope

withemergingnewscenarios.Simultaneously,therapiddevelopmentofartificial

intelligence(AI)playsasignificantroleinenhancingtheperformanceofedge

computing,aidingedgedevicesincopingwiththerapidlyincreasingdataontheedge.

Therefore,combiningthelocalcomputingcapabilityofedgedatawiththestrong

computingcapabilitiesofAI,knownasedgeintelligence,canenhancethedata

processingcapabilitiesontheedge,improvetheoverallperformanceofwireless

communicationsystems,andenhanceuserserviceexperiences.Edgeintelligenceisahotandrapidlydevelopingfieldinrecentyears,andthiswhitepaperaimstoanalyze

thecurrentresearchprogressinedgeintelligence.Itmainlyincludes:

(1)6GEdgeIntelligenceNetworksandInfrastructure:Firstly,theedge-native

intelligentarchitecturefor6Gnetworksisanalyzed.Then,theedgeintelligence

computinginfrastructureisintroduced,includingedgeintelligenthardwareandcloudplatforms.Finally,theedgeintelligencenetworkinfrastructureisdescribed,including

theedgeintelligenceaccessnetworkandcorenetwork.

(2)KeyTechnologiesofEdge-NativeIntelligence:Itisintroducedfromthe

aspectsofmodellightweight,edge-cloudcollaborativeintelligence,edgeintelligentdeployment,anddeepedgenodes.Edgeintelligenceinwirelessfederatedlearningis

alsoexplainedindetail,includingmodelsparsificationandmodelquantizationin

federatedlearning.

(3)ApplicationsofEdge-NativeIntelligence:Typicalapplicationsofedge-native

intelligenceareanalyzed,suchassmarttransportation,smartmanufacturing,and

smartenergysaving.

2/123

Contents

1.Introduction 3

1.1Background 3

1.2OverviewofEdgeComputingandEdge-NativeIntelligence 4

1.3ImportanceofEdge-NativeIntelligence 5

2.6GEdgeIntelligenceNetworksandInfrastructure 7

2.1Edge-NativeIntelligenceArchitecturefor6G 7

2.2EdgeIntelligenceComputingInfrastructure 12

2.3EdgeIntelligenceNetworkInfrastructure 37

3.KeyTechnologiesofEdge-NativeIntelligence 59

3.1ModelLightweighting 59

3.2Edge-CloudCollaborativeIntelligence 68

3.3WirelessFederatedLearninginEdgeIntelligence 75

3.4EdgeIntelligenceDeployment 85

3.5DeepEdgeNodes 91

4.Edge-NativeIntelligenceApplications 101

4.1SmartTransportation 101

4.2SmartManufacturing 110

4.3IntelligentEnergySaving 118

5.DevelopmentandChallengesofEdge-NativeIntelligence 120

6.Acknowledgment 123

3/123

1.Introduction

1.1Background

From1Gto5G,communicationtechnologyhasundergonemultipleupgradesandtransformations,significantlyimprovingdatatransferrates,reducinglatency,andexpandingnetworkcoverage.However,withtherapiddevelopmentoftechnologiessuchastheInternetofThings(IoT)andAI,theInternetofEverythingandincreasinglycomplexapplicationscenariosposechallengesthatexistingnetworkarchitecturescannotmeet.Therefore,asthenextgenerationofcommunicationtechnology,6Gmustpossesshigherperformanceandmorepowerfulintelligentcapabilities,drivingthetransitionofedge-sidenetworksfrom"InternetofEverything"to"IntelligenceofEverything."Tobetteradapttofuturediverseandcomplexuserrequestsandapplicationscenarios,theconceptofedge-nativeintelligencecameintobeingbyintegratingintelligenttechnologyintothedesignand

implementationofcommunicationsystems.[1]

Inrecentyears,thetheoryandtechnologyofAIhaveprogressedandfoundwidespreadapplicationinindustrialscenarios.However,mostAIservicesaretypicallydeployedoncloudservers.Withtheadventofthe"InternetofEverything"era,thenumberofterminaldevicesandtheamountofdatageneratedareincreasingrapidly.Thecentralizeddataprocessingmethod,whichuploadsalldatatothecloud,cannotmeetthelow-latencyrequirementsofusers.Consequently,edgecomputingemergedwiththedevelopmentoftheInternetofThings(IoT)andAI.However,currentresearchonedgecomputingimplementationfailstomeetthedemandsofcomplexservicescenarios.Therefore,edge-nativeintelligencehasthepotentialto

becomethenextresearchhotspotinedgecomputing.[2]

Edge-nativeintelligenceenablesself-dynamicsensingandself-optimizationcapabilitiesbetweenvariousunitsinthenativenetwork.Itbreaksawayfromthe

traditionalplug-inAIarchitecturebydeeplyintegratingAIintovariouslayersofthe

4/123

networktoenhancetheoverallsystemnetworkefficiency.Itachievesanautonomoussensingoftheoveralllifecycleandself-managementwithinthenetwork

architecture.[3]

1.2OverviewofEdgeComputingandEdge-Native

Intelligence

Edgecomputing:Theconceptofedgecomputingisintroducedtoalleviatetheprocessingpressureonclouddatacenters.Itisatechnologythatmigratescomputingprocessesfromcentralserverstotheedgeofdevices.Thecoreideaistointegratenetwork,computing,storage,andapplicationservicesintoaplatformclosetothedatasource,enablingservicestobeprovidednearby.Thistechnologyhelpsreducetheprocessingloadofcloudcomputingandaddressestheissueofdatatransferlatency,meetinguserneedsinreal-timeservice,intelligentapplications,security,andprivacy

protection.

Edge-nativeintelligence:Edgeintelligenceisthenextstageofdevelopmentaftertheevolutionofedgecomputing.WiththerapiddevelopmentanditerationofedgecomputingandAItechnologies,theconceptofedgeintelligencecameintobeing.ItexecutesAIalgorithmsattheedge,whichisamorecomplexdataanalysistask.DeployingAIapplicationsonedgenodes,especiallyonmobiledevicesandIoTdevices,requiresthesupportofedgecomputing.Firstly,edgenodesneedtoprovidecorrespondinghardwareandprogramminglibrariestomeetthebasicoperationsofAI.Secondly,anedgecomputingplatformisneededforresourcemanagementandtaskschedulingonedgenodes.Finally,itisnecessarytosolvethetaskoffloadinganddata

securityproblemsincloud-basedcollaborativeAI.[4]

AsAItechnologycontinuestoevolve,thelevelofintelligenceinedgedeviceshasbeenelevated.Initially,edgeintelligenceprimarilyfocusedonrunningAIalgorithmsandmodelsonedgedevicestoachieverapiddataprocessingandresponse.Thisapproachhadarelativelylowlevelofintelligencebecausethefunctionalityand

performanceofedgedeviceswerelimited,preventingtheexecutionofcomplexAI

5/123

algorithmsandmodels.[5]Withongoingtechnologicaladvancements,theperformanceandintelligenceofedgedeviceshavesignificantlyimproved.Inthisprocess,theconceptofedge-nativeintelligencehasgraduallyemerged.Edge-nativeintelligenceemphasizestheintegrationofAItechnologyintoedgedevices,enablingthemtohaveautonomousdataprocessingandanalysiscapabilities.Thisapproachenablesedgedevicestobetteradapttocomplexapplicationscenarios,andimprovethespeedand

efficiencyofdataprocessingandresponse.[6]

1.3ImportanceofEdge-NativeIntelligence

Theimportanceofedge-nativeintelligenceincludesthefollowingaspects:

(1)FullUnleashingofDataPotentialattheNetworkEdgeThroughAI:Withthesurgeinthenumberofmobiledevices,amassiveamountofdata(e.g.,audio,images,andvideos)willbegeneratedatthedeviceend.TheintroductionofAIalgorithmswillbeessentialatthispoint,astheycanquicklyanalyzetheselargevolumesofdataandextractfeaturesfromthem,leadingtohigh-qualitydecision-makingandimprovedefficiencyandreliabilityofdataprocessing.Thishelpstoreducemanualintervention

anderrorrates,improvingserviceefficiencyandreliability.[7]

(2)ExpansionofIntelligentAlgorithmDeploymentScopewithRicherDataandApplicationScenarios:Inthetraditionalcloudcomputingmodel,datasourcesaregenerallyuploadedandstoredinthecloudduetoitsextremelyhighcomputingperformance.[8]However,withtherapiddevelopmentoftheInternetofEverythingera,thetraditionalcloudcomputingmodelisgraduallyshiftingtowardstheedgecomputingmodel.Inthefuture,theedgesidewillgenerateamassiveamountofIoTdata.IfallofthisdataneedstobeuploadedtothecloudforAIalgorithmprocessing,itwilloccupyalargeamountofbandwidthresourcesandputagreatdealofcomputingpressureonthecloudcomputingdatacenter.Toaddressthesechallenges,offloadingcloudcomputingpowertotheedgeenableslow-latencydataprocessing,

thusachievingahigh-performanceedgeintelligenceprocessingmodel.[9]

(3)BetterSystemAvailabilityandScalabilitywithEdge-NativeIntelligence:AI

6/123

technologyhasachievedtremendoussuccessinmanydigitalproductsandservicesindailylife,suchasvideosurveillanceandsmarthomes.AIisalsoacriticaldrivingforceattheforefrontofinnovation,includingareaslikeautonomousdrivingandsmartfinance.Therefore,AIshouldbeclosertopeople,data,andterminaldevices.Intheprocessofachievingthesegoals,asdataprocessingoccurslocally,edgedevicescancontinuetooperateevenifthecentralserverencountersissues.Additionally,withtheadditionofnewapplicationsorupgradestoexistingones,edgedevicescaneasily

expandormodify,providinggreaterflexibility.

(4)EnhancedAvailabilityandAccessibilityofAIApplications:Withtheenhancedprocessingcapabilitiesofedgedevices,moreAIapplicationscanrunonthe

devicesthemselves,ratherthanrelyingsolelyoncloudservers.Thisincreasesthe

usabilityandaccessibilityofAI.[10]

References

[1]S.Talwar,N.Himayat,H.Nikopour,F.Xue,G.WuandV.Ilderem,“6G:ConnectivityintheEraofDistributedIntelligence,”IEEECommunicationsMagazine,vol.59,no.11,pp.45-50,Nov.2021.

[2]M.ElsayedandM.Erol-Kantarci,“AI-EnabledFutureWirelessNetworks:Challenges,Opportunities,andOpenIssues,”IEEEVehicularTechnologyMagazine,vol.14,no.3,pp.70-77,Sep.2019.

[3]S.Deng,H.Zhao,W.Fang,J.Yin,S.DustdarandA.Y.Zomaya,“EdgeIntelligence:TheConfluenceofEdgeComputingandArtificialIntelligence,”IEEEInternetofThingsJournal,vol.7,no.8,pp.7457-7469,Aug.2020.

[4]M.Pan,W.SuandY.Wang,“ReviewofResearchontheCurriculumforArtificialIntelligenceandIndustrialAutomationbasedonEdgeComputing,”2021InternationalConferenceonNetworkingandNetworkApplications(NaNA),LijiangCity,China,2021,pp.222-226.

[5]Y.Xiao,G.Shi,Y.Li,W.SaadandH.V.Poor,“TowardSelf-LearningEdgeIntelligencein6G,”IEEECommunicationsMagazine,vol.58,no.12,pp.34-40,Dec.2020..

[6]H.HuandC.Jiang,“EdgeIntelligence:ChallengesandOpportunities,”2020InternationalConferenceonComputer,InformationandTelecommunicationSystems(CITS),Hangzhou,China,2020,pp.1-5.

[7]M.Mukherjee,R.Matam,C.X.Mavromoustakis,H.Jiang,G.MastorakisandM.Guo,“IntelligentEdgeComputing:SecurityandPrivacyChallenges,”IEEECommunicationsMagazine,vol.58,no.9,pp.26-31,Sep.2020.

[8]Y.Sun,B.Xie,S.ZhouandZ.Niu,“MEET:Mobility-EnhancedEdgeinTelligenceforSmartandGreen6GNetworks,”IEEECommunicationsMagazine,vol.61,no.1,pp.64-70,Jan.2023.

7/123

[9]Q.Cui,Z.Gong,W.Ni,Y.Hou,X.Chen,X.Tao,P.Zhang,“StochasticOnlineLearningforMobileEdgeComputing:LearningfromChanges,”IEEECommunicationsMagazine,vol.57,no.3,pp.63-69,Mar.2019.

[10]M.Yao,M.Sohul,V.MarojevicandJ.H.Reed,“ArtificialIntelligenceDefined5GRadioAccessNetworks,”IEEECommunicationsMagazine,vol.57,no.3,pp.14-20,Mar.2019.

2.6GEdgeIntelligenceNetworksand

Infrastructure

2.1Edge-NativeIntelligenceArchitecturefor6G

Asakeyenablingtechnologyforthenextgenerationofradiowirelessnetworks,Multi-accessEdgeComputing(MEC)cansupportaplethoraofemergingservices.WiththecontinuousdevelopmentofAI,itsapplicationinMECisbecomingincreasinglywidespread.However,in5Gnetworks,AIisonlyusedasanadd-onapplicationtoassistMEC.In6Gnetworks,MECwillincorporateAIfromtheinitialdesignphase,treatingitasanintegralpartoftheMECsystem.ThisapproachaimstoenhancetheflexibilityandopennessofMEC,betteraddressingtheconstantlyemergingapplicationscenariosanduserdemands.Asaresult,theedge-nativeintelligencearchitecturehasbeenproposed,whichisbasedonthedecouplingand

reconstructionofAIfunctionstoprovideuserswithcustomizedAIservices.

2.1.1OverviewoftheArchitecture

Theedge-nativeintelligencearchitectureconsistsof"fourlayersandthreeplanes",asshowninFigure2.1.The"fourlayers"includetheinfrastructurelayer,virtualizationlayer,functionlayer,andapplicationlayer;the"threeplanes"include

thecontrolplane,AIplane,andmanagementandorchestration(MANO)plane.

8/123

Figure2.1Edge-NativeIntelligenceArchitecture

I.Fourlayers:

.Infrastructurelayer:Locatedatthebottomoftheedge-nativeintelligencearchitecture,itencompassesallcommunication,storage,andcomputingresourcesinthesystem.CommunicationresourcesincludeWi-FiandtheInternet;storageresourcesincludememory,HardDiskDrive(HDD)andSolidStateDrive(SSD);computingresourcesincludeCentralProcessingUnit(CPU)andGraphics

ProcessingUnit(GPU).

.Virtualizationlayer:Positionedabovetheinfrastructurelayer,itabstractstheunderlyingresourcesintoaresourcepoolforusebyupper-layernetworkfunctions.Whenservicedemandsarise,thevirtualizationlayercancreateDockercontainersandrunthemintheresourcepooltosupplynetworkfunctions,

ensuringtheirnormaloperationandtherebyguaranteeingcustomizedAIservices.

.Functionlayer:Locatedabovethevirtualizationlayer,itconsistsofdecouplednetworkfunctions,namelycontrolfunctionsandAIfunctions,andaservicebus.Differentnetworkfunctionscanbeactivated,released,andreconfiguredinreal

timebasedonservicerequirements,interconnectedthroughtheservicebus.

.Applicationlayer:Locatedatthetopoftheedge-nativeintelligencearchitecture,itincludesdiversenetworkapplications.Theapplicationlayerinteractsdirectly

withusersand,uponuserrequests,automaticallyinvokesthenetworkfunctions

9/123

ofthefunctionlayerandtheDockercontainersofthevirtualizationlayerto

provideservicestousers.

II.Threeplanes:

.Controlplane:Itisresponsibleforthetransmissionandprocessingofcontrol

signalingfromtheinfrastructurelayertotheapplicationlayer.

.MANOplane:IttransformsservicerequestsfromthecontrolplaneintoMANOcommandsandcoordinatesandmanagesthesystem'sfunctionsandresources.TheMANOplaneincludestheVirtualizedInfrastructureManager(VIM),FunctionalMANO,andApplicationMANO,dedicatedtothemanagementand

orchestrationofresources,functions,andapplications,respectively.

.AIplane:AlsoknownasthenativeAIplane,itservesasthecoreaspectoftheedge-nativeintelligencearchitecture,responsibleforlearninguserandnetworkbehavioranddemands,achievingself-operationofthenetwork.ItsvirtualizationlayerprovidesaruntimeenvironmentlibraryforAIapplications,suchasPyTorchandTensorFlow,whichcanbeselectedbasedonapplicationrequestsandresourcestate.TheAIplaneincludesdecoupledAIfunctionsandaservicebusinitsvirtualizationlayer,whileitsapplicationlayercomprisesatemplateselectorandanintelligentalgorithmmodellibraryforflexiblereconstructionof

edge-nativeintelligence.

2.1.2DesignandImplementationoftheNativeAIPlane

Intheedge-nativeintelligencearchitecture,themicroservice-basedAIplaneisdecoupledintoindependentAIfunctions.TheseAIfunctionscanbeactivatedandinvokedondemand.Whenanapplicationrequestarrives,thedecoupledAIfunctionscanbecombinedondemandtoprovideAIservicestousers,thusachieving

edge-nativeintelligence.

I.Decouplingofedge-nativeintelligenceplane:

AsshowninFigure2.1,intheedge-nativeintelligenceplane,AIservicesare

decoupledintoDataCollectionFunction(DCF),DataPreprocessingFunction(DPF),

10/123

ModelTrainingFunction(MTF),ModelValidationFunction(MVF),andData

StorageFunction(DSF).Eachfunctionisdescribedasfollows:

.DCF:CollectsrawdatarequiredforAImodeltrainingandgeneratesthe

correspondingtrainingdataset.

.DPF:Preprocessestherawdatacontaininginvalidcomponents.Removesinvalidoroffsetcontentfromtherawdatathroughdatasampling,featureextraction,anddimensionalityreduction.ConvertsthedataintotheformatrequiredforAImodel

training.

.MTF:SelectstheappropriateAIalgorithmaccordingtoservicerequirementsandtrainsthecoremodeloftheAIalgorithm.

.MVF:EvaluatestheperformanceoftheAImodelduringmodeltrainingor

real-timeinference.

.DSF:StoresandmanagesalldataandAIF-relatedparametersoftheAIplane.

CommunicationandinteractionbetweendifferentAIfunctionsoccurthroughaunifiedservicebus.Additionally,AIfunctionscancommunicatewithcontrolfunctionsviatheservicebusandbeactivatedbyFunctionalMANObasedonservice

types.

II.Reconstructionofedge-nativeintelligenceplane:

Edge-nativeintelligencereconstructionborrowstheideaoftemplateand

instantiation.ItperformsAIfunctionactivation,runtimeconfiguration,andresource

allocationbasedonservicetypetoachievecustomizedAIservices.

.Template:Providesacommonsolutionforaclassofedgeintelligentservicesbyextractingandabstractingtheircommonalities.Theedge-nativeintelligencetemplateinvolveskeyelementssuchastemplateinformation(Tinf)andtemplateidentifier(Tid).TemplateinformationencompassesthecomponentsoftheAIapplication,namelythetypesofAIF,requiredresources,andruntimeenvironments,storedintheintelligentalgorithmmodellibrary.ThetemplateidentifierdistinguishesdifferenttemplatescorrespondingtoAIapplicationsandisstoredinthetemplateselector.Beforeusingthetemplate,predefinedoperations

arenecessary,definingparametersrelatedtofunctionalityactivation,resource

11/123

allocation,andruntimeenvironmentconfigurationaccordingtospecificAI

applicationrequirements.

.Instantiation:CreatesanAIapplicationinstancebasedontheparametersdefinedinthetemplatetorespondtoAIservicerequests.AsshowninFigure2.2,

theedge-nativeintelligenceinstantiationprocessincludesthefollowingsteps:

1)MANOcontinuouslymonitorstheapplicationlayerandsendsatemplate

selectionrequesttothetemplateselectorwhenanapplicationrequestisreceived.

2)ThetemplateselectorselectsthecorrespondingtemplateaccordingtotheapplicationtypeandsendsitsTidtotheintelligentalgorithmmodellibraryto

requestTinf.

3)TheintelligentalgorithmmodellibraryextractsthecorrespondingTinf

ofthetemplateandprovidesfeedbacktothetemplateselector.

4)ThetemplateselectorsendsthereceivedTinftotheMANOplane.

5)TheMANOplaneperformstheinstantiationoperationaccordingtothe

receivedTinf:

(a)Configurestheruntimeenvironmentlibraryrequiredbytheapplication.

(b)Allocatestherequiredresources.

(c)ActivatestherelevantAIF.

12/123

Figure2.2Edge-NativeIntelligenceInstantiationProcess

2.2EdgeIntelligenceComputingInfrastructure

2.2.1EdgeIntelligentHardware

Withtherapiddevelopmentoftechnology,edgeintelligenthardwarehasgraduallybecomeafocalpointwheretheIoT,AI,andcloudcomputingintersect.Thistypeofintelligenthardwarenotonlypossessesreal-timeandefficientdataprocessingcapabilitiesbutalsocanmakeintelligentdecisionsatthenetworkedge,significantlyalleviatingdataprocessingpressureonthecloudandimprovingoverallsystem

responsivenessandefficiency.

Intermsofcustomerdemands,edgeintelligenthardwarecaterstovarious

industries,placinghighrequirementsonadaptabilitytotheenvironment,real-time

13/123

processing,security,andstability.Forexample,insmartmanufacturing,edgeintelligenthardwarecancollect,process,andanalyzevariousdataonfactoryproductionlinesinreal-time,enablingautomationandintelligenceintheproductionprocess.Inthemedicalfield,edgeintelligenthardwarecananalyzepatients'

physiologicaldata,enablingremotehealthcareandintelligentdiagnosis.

Fromatechnicalperspective,edgeintelligenthardwareincorporatesadvancedalgorithmsanddataprocessingtechnologies,enablinghigh-efficiencydataprocessingandanalysis.Additionally,itadoptsamultitudeofsensors,communicationtechnologies,andsoftwaredefinitions,achievinginterconnectednessandinteroperabilitywithvariousdevicesandsystems.Moreover,edgeintelligenthardwarestandsoutwithitslowpowerconsumptionandhighreliability,readily

meetingtheusagerequirementsindiverseharshenvironments.

Intermsofproductforms,edgeintelligenthardwarecanmanifestinvariousdevicessuchasintelligentcameras,intelligentsensors,intelligentrobots,andedgeservers.Thesedevicescanconnectwithvariousequipmentandsystems,facilitatingdatasharingandcollaborativeprocessing.Moreover,theycanundergoremotemanagementandcontrolthroughthecloud,enablingremotemonitoringand

maintenanceofdevices.

I.Edgeintelligenthardwarerequirements

Asshowninthetablebelow,consideringthedistancefromthehardwaredeploymentlocationtothedatacenter,edgeintelligenthardwarecanbecategorizedintoNearEdgeandFarEdge.NearEdgeprimarilyinvolvesthedescentofcloudcomputing,resemblingclouddatacentersinfunctionality,withpowerfulandcomprehensivecomputingcapabilities.Thehardwareproductformsincludeintegratedcabinetsandheavy-edgeservers.FarEdgefocusesmoreonspecificapplicationsattheedgesite,withstrongrelevancetospecificapplicationssuchasdataaggregation/transformations,protocolparsing,industrialcontrol,andAIinference.Thehardwareproductformsarediverse,includingindustrialcomputers,

PLCs,gateways,andMEC.

14/123

Function

ProductExamples

Near

Edge

Deepedgecomputing

Regionaldatacenters,CDN(contentdeliverynetworks),telecomdatacenters,hostingservice

providers

Deepedgecomputing

Localdatacenters,heavy-edgeservers,microdata

centers(integratedcabinets)

Far

Edge

Aggregationanalysisandcontrol,data

management

AIBox,MEC,HCI(hyper-converged

infrastructure)

Aggregation,conversion,filtering,data

reduction,forwarding

Gateways,smallcells,routers,accesspoints

Analogtodigitalconversion(sensors),sendingcontroldata(actuators),direct

analysis/control

Industrialcomputers,PLC(programmablelogic

controller),DCS(distributedcontroller),etc.

Edgecomputinghardwareproductshavetheiruniquecharacteristics,distinctfromthehardwareproductsofcloudcomputingandedgecomputing.Thereasons

behindthisdistinctionaretheprimarydemandsfacedbyedgecomputing:

(Ⅰ)Diverseandcomplexapplicationscenarios:

(1)Thediversityinedgedeploymentrequiresdifferentinfrastructurecombinations.Edgedeploymentspansvariousindustryapplications,userscenarios,andverticaldomains.Itincludesawiderangeofinfrastructuresolutions,makingtheedgesolutionecosystemhighlycomplexintermsofproductforms,configurations,

andmanagementtools.

(2)Edgecomputingisexperiencingrapidgrowthinindustriessuchastelecommunications,utilities,manufacturing,andfinance.Telecomoperatorsareactivelybuildingedgecomputingplatforms,leadingmarketdevelopment.Otherindustries,particularlyutilities,manufacturing,andfinance,arealsoacceleratingthe

adoptionofedgecomputingbydeployingdedicatededgeinfrastructuretoenhance

15/123

efficiencyinusecasessuchastheIndustrialInternet,gridmanagement,andsmart

commercialbuildings.

(3)ThevigorousdevelopmentoftechnologieslikeAI,machinelearning,bigdatamodels,andheterogeneouscomputingfurtherpropelsthegrowthoftheedgecomputingmarket.Theproliferationofcompute-intensiveanalyticalworkloadsisubiquitousinmanyindustriesandusecases,unlockingthepotentialofuntappeddata,mostofwhichresidesorisgeneratedattheedge.TheexpectedconvergenceofAI-nativecomputingcapabilitieswiththeperformancerequirementsofnewanalyticalplatformswilldrivethegrowthofmanynewedgeinfrastructuredeployments.ThediversityofAIapplicationsalsodiversifiesthedemandforedgecomputinghardware,

software,services,andsolutions.

(Ⅱ)Longlifecycleproductdemands:

(1)Inedgecomputingapplicationsacrossvariousindustriesliketransportation,healthcare,energy,andindustry,suchasrailtrafficcontrolsystems,mediumtolargemedicalequipment,substation/distributionstationcontrolunits,andindustrialcontrolDCS/MES,theproductsoftengothroughalonglifecycleinvolvingstagesofproductdesign,researchanddevelopment,testingandverification,implementationandoperation,andlatermaintenance.Therefore,5-7yearsorevenlongerlifecycleforedge

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论