版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/123
Abstract
Edgecomputing,asakeytechnologyofthenextgenerationofradioaccess
networks(RAN),hasdriventhedecentralizationofnetworksandcomputingfacilities.Edgeserversclosertouserterminalscansignificantlyreduceservicelatencyandcope
withemergingnewscenarios.Simultaneously,therapiddevelopmentofartificial
intelligence(AI)playsasignificantroleinenhancingtheperformanceofedge
computing,aidingedgedevicesincopingwiththerapidlyincreasingdataontheedge.
Therefore,combiningthelocalcomputingcapabilityofedgedatawiththestrong
computingcapabilitiesofAI,knownasedgeintelligence,canenhancethedata
processingcapabilitiesontheedge,improvetheoverallperformanceofwireless
communicationsystems,andenhanceuserserviceexperiences.Edgeintelligenceisahotandrapidlydevelopingfieldinrecentyears,andthiswhitepaperaimstoanalyze
thecurrentresearchprogressinedgeintelligence.Itmainlyincludes:
(1)6GEdgeIntelligenceNetworksandInfrastructure:Firstly,theedge-native
intelligentarchitecturefor6Gnetworksisanalyzed.Then,theedgeintelligence
computinginfrastructureisintroduced,includingedgeintelligenthardwareandcloudplatforms.Finally,theedgeintelligencenetworkinfrastructureisdescribed,including
theedgeintelligenceaccessnetworkandcorenetwork.
(2)KeyTechnologiesofEdge-NativeIntelligence:Itisintroducedfromthe
aspectsofmodellightweight,edge-cloudcollaborativeintelligence,edgeintelligentdeployment,anddeepedgenodes.Edgeintelligenceinwirelessfederatedlearningis
alsoexplainedindetail,includingmodelsparsificationandmodelquantizationin
federatedlearning.
(3)ApplicationsofEdge-NativeIntelligence:Typicalapplicationsofedge-native
intelligenceareanalyzed,suchassmarttransportation,smartmanufacturing,and
smartenergysaving.
2/123
Contents
1.Introduction 3
1.1Background 3
1.2OverviewofEdgeComputingandEdge-NativeIntelligence 4
1.3ImportanceofEdge-NativeIntelligence 5
2.6GEdgeIntelligenceNetworksandInfrastructure 7
2.1Edge-NativeIntelligenceArchitecturefor6G 7
2.2EdgeIntelligenceComputingInfrastructure 12
2.3EdgeIntelligenceNetworkInfrastructure 37
3.KeyTechnologiesofEdge-NativeIntelligence 59
3.1ModelLightweighting 59
3.2Edge-CloudCollaborativeIntelligence 68
3.3WirelessFederatedLearninginEdgeIntelligence 75
3.4EdgeIntelligenceDeployment 85
3.5DeepEdgeNodes 91
4.Edge-NativeIntelligenceApplications 101
4.1SmartTransportation 101
4.2SmartManufacturing 110
4.3IntelligentEnergySaving 118
5.DevelopmentandChallengesofEdge-NativeIntelligence 120
6.Acknowledgment 123
3/123
1.Introduction
1.1Background
From1Gto5G,communicationtechnologyhasundergonemultipleupgradesandtransformations,significantlyimprovingdatatransferrates,reducinglatency,andexpandingnetworkcoverage.However,withtherapiddevelopmentoftechnologiessuchastheInternetofThings(IoT)andAI,theInternetofEverythingandincreasinglycomplexapplicationscenariosposechallengesthatexistingnetworkarchitecturescannotmeet.Therefore,asthenextgenerationofcommunicationtechnology,6Gmustpossesshigherperformanceandmorepowerfulintelligentcapabilities,drivingthetransitionofedge-sidenetworksfrom"InternetofEverything"to"IntelligenceofEverything."Tobetteradapttofuturediverseandcomplexuserrequestsandapplicationscenarios,theconceptofedge-nativeintelligencecameintobeingbyintegratingintelligenttechnologyintothedesignand
implementationofcommunicationsystems.[1]
Inrecentyears,thetheoryandtechnologyofAIhaveprogressedandfoundwidespreadapplicationinindustrialscenarios.However,mostAIservicesaretypicallydeployedoncloudservers.Withtheadventofthe"InternetofEverything"era,thenumberofterminaldevicesandtheamountofdatageneratedareincreasingrapidly.Thecentralizeddataprocessingmethod,whichuploadsalldatatothecloud,cannotmeetthelow-latencyrequirementsofusers.Consequently,edgecomputingemergedwiththedevelopmentoftheInternetofThings(IoT)andAI.However,currentresearchonedgecomputingimplementationfailstomeetthedemandsofcomplexservicescenarios.Therefore,edge-nativeintelligencehasthepotentialto
becomethenextresearchhotspotinedgecomputing.[2]
Edge-nativeintelligenceenablesself-dynamicsensingandself-optimizationcapabilitiesbetweenvariousunitsinthenativenetwork.Itbreaksawayfromthe
traditionalplug-inAIarchitecturebydeeplyintegratingAIintovariouslayersofthe
4/123
networktoenhancetheoverallsystemnetworkefficiency.Itachievesanautonomoussensingoftheoveralllifecycleandself-managementwithinthenetwork
architecture.[3]
1.2OverviewofEdgeComputingandEdge-Native
Intelligence
Edgecomputing:Theconceptofedgecomputingisintroducedtoalleviatetheprocessingpressureonclouddatacenters.Itisatechnologythatmigratescomputingprocessesfromcentralserverstotheedgeofdevices.Thecoreideaistointegratenetwork,computing,storage,andapplicationservicesintoaplatformclosetothedatasource,enablingservicestobeprovidednearby.Thistechnologyhelpsreducetheprocessingloadofcloudcomputingandaddressestheissueofdatatransferlatency,meetinguserneedsinreal-timeservice,intelligentapplications,security,andprivacy
protection.
Edge-nativeintelligence:Edgeintelligenceisthenextstageofdevelopmentaftertheevolutionofedgecomputing.WiththerapiddevelopmentanditerationofedgecomputingandAItechnologies,theconceptofedgeintelligencecameintobeing.ItexecutesAIalgorithmsattheedge,whichisamorecomplexdataanalysistask.DeployingAIapplicationsonedgenodes,especiallyonmobiledevicesandIoTdevices,requiresthesupportofedgecomputing.Firstly,edgenodesneedtoprovidecorrespondinghardwareandprogramminglibrariestomeetthebasicoperationsofAI.Secondly,anedgecomputingplatformisneededforresourcemanagementandtaskschedulingonedgenodes.Finally,itisnecessarytosolvethetaskoffloadinganddata
securityproblemsincloud-basedcollaborativeAI.[4]
AsAItechnologycontinuestoevolve,thelevelofintelligenceinedgedeviceshasbeenelevated.Initially,edgeintelligenceprimarilyfocusedonrunningAIalgorithmsandmodelsonedgedevicestoachieverapiddataprocessingandresponse.Thisapproachhadarelativelylowlevelofintelligencebecausethefunctionalityand
performanceofedgedeviceswerelimited,preventingtheexecutionofcomplexAI
5/123
algorithmsandmodels.[5]Withongoingtechnologicaladvancements,theperformanceandintelligenceofedgedeviceshavesignificantlyimproved.Inthisprocess,theconceptofedge-nativeintelligencehasgraduallyemerged.Edge-nativeintelligenceemphasizestheintegrationofAItechnologyintoedgedevices,enablingthemtohaveautonomousdataprocessingandanalysiscapabilities.Thisapproachenablesedgedevicestobetteradapttocomplexapplicationscenarios,andimprovethespeedand
efficiencyofdataprocessingandresponse.[6]
1.3ImportanceofEdge-NativeIntelligence
Theimportanceofedge-nativeintelligenceincludesthefollowingaspects:
(1)FullUnleashingofDataPotentialattheNetworkEdgeThroughAI:Withthesurgeinthenumberofmobiledevices,amassiveamountofdata(e.g.,audio,images,andvideos)willbegeneratedatthedeviceend.TheintroductionofAIalgorithmswillbeessentialatthispoint,astheycanquicklyanalyzetheselargevolumesofdataandextractfeaturesfromthem,leadingtohigh-qualitydecision-makingandimprovedefficiencyandreliabilityofdataprocessing.Thishelpstoreducemanualintervention
anderrorrates,improvingserviceefficiencyandreliability.[7]
(2)ExpansionofIntelligentAlgorithmDeploymentScopewithRicherDataandApplicationScenarios:Inthetraditionalcloudcomputingmodel,datasourcesaregenerallyuploadedandstoredinthecloudduetoitsextremelyhighcomputingperformance.[8]However,withtherapiddevelopmentoftheInternetofEverythingera,thetraditionalcloudcomputingmodelisgraduallyshiftingtowardstheedgecomputingmodel.Inthefuture,theedgesidewillgenerateamassiveamountofIoTdata.IfallofthisdataneedstobeuploadedtothecloudforAIalgorithmprocessing,itwilloccupyalargeamountofbandwidthresourcesandputagreatdealofcomputingpressureonthecloudcomputingdatacenter.Toaddressthesechallenges,offloadingcloudcomputingpowertotheedgeenableslow-latencydataprocessing,
thusachievingahigh-performanceedgeintelligenceprocessingmodel.[9]
(3)BetterSystemAvailabilityandScalabilitywithEdge-NativeIntelligence:AI
6/123
technologyhasachievedtremendoussuccessinmanydigitalproductsandservicesindailylife,suchasvideosurveillanceandsmarthomes.AIisalsoacriticaldrivingforceattheforefrontofinnovation,includingareaslikeautonomousdrivingandsmartfinance.Therefore,AIshouldbeclosertopeople,data,andterminaldevices.Intheprocessofachievingthesegoals,asdataprocessingoccurslocally,edgedevicescancontinuetooperateevenifthecentralserverencountersissues.Additionally,withtheadditionofnewapplicationsorupgradestoexistingones,edgedevicescaneasily
expandormodify,providinggreaterflexibility.
(4)EnhancedAvailabilityandAccessibilityofAIApplications:Withtheenhancedprocessingcapabilitiesofedgedevices,moreAIapplicationscanrunonthe
devicesthemselves,ratherthanrelyingsolelyoncloudservers.Thisincreasesthe
usabilityandaccessibilityofAI.[10]
References
[1]S.Talwar,N.Himayat,H.Nikopour,F.Xue,G.WuandV.Ilderem,“6G:ConnectivityintheEraofDistributedIntelligence,”IEEECommunicationsMagazine,vol.59,no.11,pp.45-50,Nov.2021.
[2]M.ElsayedandM.Erol-Kantarci,“AI-EnabledFutureWirelessNetworks:Challenges,Opportunities,andOpenIssues,”IEEEVehicularTechnologyMagazine,vol.14,no.3,pp.70-77,Sep.2019.
[3]S.Deng,H.Zhao,W.Fang,J.Yin,S.DustdarandA.Y.Zomaya,“EdgeIntelligence:TheConfluenceofEdgeComputingandArtificialIntelligence,”IEEEInternetofThingsJournal,vol.7,no.8,pp.7457-7469,Aug.2020.
[4]M.Pan,W.SuandY.Wang,“ReviewofResearchontheCurriculumforArtificialIntelligenceandIndustrialAutomationbasedonEdgeComputing,”2021InternationalConferenceonNetworkingandNetworkApplications(NaNA),LijiangCity,China,2021,pp.222-226.
[5]Y.Xiao,G.Shi,Y.Li,W.SaadandH.V.Poor,“TowardSelf-LearningEdgeIntelligencein6G,”IEEECommunicationsMagazine,vol.58,no.12,pp.34-40,Dec.2020..
[6]H.HuandC.Jiang,“EdgeIntelligence:ChallengesandOpportunities,”2020InternationalConferenceonComputer,InformationandTelecommunicationSystems(CITS),Hangzhou,China,2020,pp.1-5.
[7]M.Mukherjee,R.Matam,C.X.Mavromoustakis,H.Jiang,G.MastorakisandM.Guo,“IntelligentEdgeComputing:SecurityandPrivacyChallenges,”IEEECommunicationsMagazine,vol.58,no.9,pp.26-31,Sep.2020.
[8]Y.Sun,B.Xie,S.ZhouandZ.Niu,“MEET:Mobility-EnhancedEdgeinTelligenceforSmartandGreen6GNetworks,”IEEECommunicationsMagazine,vol.61,no.1,pp.64-70,Jan.2023.
7/123
[9]Q.Cui,Z.Gong,W.Ni,Y.Hou,X.Chen,X.Tao,P.Zhang,“StochasticOnlineLearningforMobileEdgeComputing:LearningfromChanges,”IEEECommunicationsMagazine,vol.57,no.3,pp.63-69,Mar.2019.
[10]M.Yao,M.Sohul,V.MarojevicandJ.H.Reed,“ArtificialIntelligenceDefined5GRadioAccessNetworks,”IEEECommunicationsMagazine,vol.57,no.3,pp.14-20,Mar.2019.
2.6GEdgeIntelligenceNetworksand
Infrastructure
2.1Edge-NativeIntelligenceArchitecturefor6G
Asakeyenablingtechnologyforthenextgenerationofradiowirelessnetworks,Multi-accessEdgeComputing(MEC)cansupportaplethoraofemergingservices.WiththecontinuousdevelopmentofAI,itsapplicationinMECisbecomingincreasinglywidespread.However,in5Gnetworks,AIisonlyusedasanadd-onapplicationtoassistMEC.In6Gnetworks,MECwillincorporateAIfromtheinitialdesignphase,treatingitasanintegralpartoftheMECsystem.ThisapproachaimstoenhancetheflexibilityandopennessofMEC,betteraddressingtheconstantlyemergingapplicationscenariosanduserdemands.Asaresult,theedge-nativeintelligencearchitecturehasbeenproposed,whichisbasedonthedecouplingand
reconstructionofAIfunctionstoprovideuserswithcustomizedAIservices.
2.1.1OverviewoftheArchitecture
Theedge-nativeintelligencearchitectureconsistsof"fourlayersandthreeplanes",asshowninFigure2.1.The"fourlayers"includetheinfrastructurelayer,virtualizationlayer,functionlayer,andapplicationlayer;the"threeplanes"include
thecontrolplane,AIplane,andmanagementandorchestration(MANO)plane.
8/123
Figure2.1Edge-NativeIntelligenceArchitecture
I.Fourlayers:
.Infrastructurelayer:Locatedatthebottomoftheedge-nativeintelligencearchitecture,itencompassesallcommunication,storage,andcomputingresourcesinthesystem.CommunicationresourcesincludeWi-FiandtheInternet;storageresourcesincludememory,HardDiskDrive(HDD)andSolidStateDrive(SSD);computingresourcesincludeCentralProcessingUnit(CPU)andGraphics
ProcessingUnit(GPU).
.Virtualizationlayer:Positionedabovetheinfrastructurelayer,itabstractstheunderlyingresourcesintoaresourcepoolforusebyupper-layernetworkfunctions.Whenservicedemandsarise,thevirtualizationlayercancreateDockercontainersandrunthemintheresourcepooltosupplynetworkfunctions,
ensuringtheirnormaloperationandtherebyguaranteeingcustomizedAIservices.
.Functionlayer:Locatedabovethevirtualizationlayer,itconsistsofdecouplednetworkfunctions,namelycontrolfunctionsandAIfunctions,andaservicebus.Differentnetworkfunctionscanbeactivated,released,andreconfiguredinreal
timebasedonservicerequirements,interconnectedthroughtheservicebus.
.Applicationlayer:Locatedatthetopoftheedge-nativeintelligencearchitecture,itincludesdiversenetworkapplications.Theapplicationlayerinteractsdirectly
withusersand,uponuserrequests,automaticallyinvokesthenetworkfunctions
9/123
ofthefunctionlayerandtheDockercontainersofthevirtualizationlayerto
provideservicestousers.
II.Threeplanes:
.Controlplane:Itisresponsibleforthetransmissionandprocessingofcontrol
signalingfromtheinfrastructurelayertotheapplicationlayer.
.MANOplane:IttransformsservicerequestsfromthecontrolplaneintoMANOcommandsandcoordinatesandmanagesthesystem'sfunctionsandresources.TheMANOplaneincludestheVirtualizedInfrastructureManager(VIM),FunctionalMANO,andApplicationMANO,dedicatedtothemanagementand
orchestrationofresources,functions,andapplications,respectively.
.AIplane:AlsoknownasthenativeAIplane,itservesasthecoreaspectoftheedge-nativeintelligencearchitecture,responsibleforlearninguserandnetworkbehavioranddemands,achievingself-operationofthenetwork.ItsvirtualizationlayerprovidesaruntimeenvironmentlibraryforAIapplications,suchasPyTorchandTensorFlow,whichcanbeselectedbasedonapplicationrequestsandresourcestate.TheAIplaneincludesdecoupledAIfunctionsandaservicebusinitsvirtualizationlayer,whileitsapplicationlayercomprisesatemplateselectorandanintelligentalgorithmmodellibraryforflexiblereconstructionof
edge-nativeintelligence.
2.1.2DesignandImplementationoftheNativeAIPlane
Intheedge-nativeintelligencearchitecture,themicroservice-basedAIplaneisdecoupledintoindependentAIfunctions.TheseAIfunctionscanbeactivatedandinvokedondemand.Whenanapplicationrequestarrives,thedecoupledAIfunctionscanbecombinedondemandtoprovideAIservicestousers,thusachieving
edge-nativeintelligence.
I.Decouplingofedge-nativeintelligenceplane:
AsshowninFigure2.1,intheedge-nativeintelligenceplane,AIservicesare
decoupledintoDataCollectionFunction(DCF),DataPreprocessingFunction(DPF),
10/123
ModelTrainingFunction(MTF),ModelValidationFunction(MVF),andData
StorageFunction(DSF).Eachfunctionisdescribedasfollows:
.DCF:CollectsrawdatarequiredforAImodeltrainingandgeneratesthe
correspondingtrainingdataset.
.DPF:Preprocessestherawdatacontaininginvalidcomponents.Removesinvalidoroffsetcontentfromtherawdatathroughdatasampling,featureextraction,anddimensionalityreduction.ConvertsthedataintotheformatrequiredforAImodel
training.
.MTF:SelectstheappropriateAIalgorithmaccordingtoservicerequirementsandtrainsthecoremodeloftheAIalgorithm.
.MVF:EvaluatestheperformanceoftheAImodelduringmodeltrainingor
real-timeinference.
.DSF:StoresandmanagesalldataandAIF-relatedparametersoftheAIplane.
CommunicationandinteractionbetweendifferentAIfunctionsoccurthroughaunifiedservicebus.Additionally,AIfunctionscancommunicatewithcontrolfunctionsviatheservicebusandbeactivatedbyFunctionalMANObasedonservice
types.
II.Reconstructionofedge-nativeintelligenceplane:
Edge-nativeintelligencereconstructionborrowstheideaoftemplateand
instantiation.ItperformsAIfunctionactivation,runtimeconfiguration,andresource
allocationbasedonservicetypetoachievecustomizedAIservices.
.Template:Providesacommonsolutionforaclassofedgeintelligentservicesbyextractingandabstractingtheircommonalities.Theedge-nativeintelligencetemplateinvolveskeyelementssuchastemplateinformation(Tinf)andtemplateidentifier(Tid).TemplateinformationencompassesthecomponentsoftheAIapplication,namelythetypesofAIF,requiredresources,andruntimeenvironments,storedintheintelligentalgorithmmodellibrary.ThetemplateidentifierdistinguishesdifferenttemplatescorrespondingtoAIapplicationsandisstoredinthetemplateselector.Beforeusingthetemplate,predefinedoperations
arenecessary,definingparametersrelatedtofunctionalityactivation,resource
11/123
allocation,andruntimeenvironmentconfigurationaccordingtospecificAI
applicationrequirements.
.Instantiation:CreatesanAIapplicationinstancebasedontheparametersdefinedinthetemplatetorespondtoAIservicerequests.AsshowninFigure2.2,
theedge-nativeintelligenceinstantiationprocessincludesthefollowingsteps:
1)MANOcontinuouslymonitorstheapplicationlayerandsendsatemplate
selectionrequesttothetemplateselectorwhenanapplicationrequestisreceived.
2)ThetemplateselectorselectsthecorrespondingtemplateaccordingtotheapplicationtypeandsendsitsTidtotheintelligentalgorithmmodellibraryto
requestTinf.
3)TheintelligentalgorithmmodellibraryextractsthecorrespondingTinf
ofthetemplateandprovidesfeedbacktothetemplateselector.
4)ThetemplateselectorsendsthereceivedTinftotheMANOplane.
5)TheMANOplaneperformstheinstantiationoperationaccordingtothe
receivedTinf:
(a)Configurestheruntimeenvironmentlibraryrequiredbytheapplication.
(b)Allocatestherequiredresources.
(c)ActivatestherelevantAIF.
12/123
Figure2.2Edge-NativeIntelligenceInstantiationProcess
2.2EdgeIntelligenceComputingInfrastructure
2.2.1EdgeIntelligentHardware
Withtherapiddevelopmentoftechnology,edgeintelligenthardwarehasgraduallybecomeafocalpointwheretheIoT,AI,andcloudcomputingintersect.Thistypeofintelligenthardwarenotonlypossessesreal-timeandefficientdataprocessingcapabilitiesbutalsocanmakeintelligentdecisionsatthenetworkedge,significantlyalleviatingdataprocessingpressureonthecloudandimprovingoverallsystem
responsivenessandefficiency.
Intermsofcustomerdemands,edgeintelligenthardwarecaterstovarious
industries,placinghighrequirementsonadaptabilitytotheenvironment,real-time
13/123
processing,security,andstability.Forexample,insmartmanufacturing,edgeintelligenthardwarecancollect,process,andanalyzevariousdataonfactoryproductionlinesinreal-time,enablingautomationandintelligenceintheproductionprocess.Inthemedicalfield,edgeintelligenthardwarecananalyzepatients'
physiologicaldata,enablingremotehealthcareandintelligentdiagnosis.
Fromatechnicalperspective,edgeintelligenthardwareincorporatesadvancedalgorithmsanddataprocessingtechnologies,enablinghigh-efficiencydataprocessingandanalysis.Additionally,itadoptsamultitudeofsensors,communicationtechnologies,andsoftwaredefinitions,achievinginterconnectednessandinteroperabilitywithvariousdevicesandsystems.Moreover,edgeintelligenthardwarestandsoutwithitslowpowerconsumptionandhighreliability,readily
meetingtheusagerequirementsindiverseharshenvironments.
Intermsofproductforms,edgeintelligenthardwarecanmanifestinvariousdevicessuchasintelligentcameras,intelligentsensors,intelligentrobots,andedgeservers.Thesedevicescanconnectwithvariousequipmentandsystems,facilitatingdatasharingandcollaborativeprocessing.Moreover,theycanundergoremotemanagementandcontrolthroughthecloud,enablingremotemonitoringand
maintenanceofdevices.
I.Edgeintelligenthardwarerequirements
Asshowninthetablebelow,consideringthedistancefromthehardwaredeploymentlocationtothedatacenter,edgeintelligenthardwarecanbecategorizedintoNearEdgeandFarEdge.NearEdgeprimarilyinvolvesthedescentofcloudcomputing,resemblingclouddatacentersinfunctionality,withpowerfulandcomprehensivecomputingcapabilities.Thehardwareproductformsincludeintegratedcabinetsandheavy-edgeservers.FarEdgefocusesmoreonspecificapplicationsattheedgesite,withstrongrelevancetospecificapplicationssuchasdataaggregation/transformations,protocolparsing,industrialcontrol,andAIinference.Thehardwareproductformsarediverse,includingindustrialcomputers,
PLCs,gateways,andMEC.
14/123
Function
ProductExamples
Near
Edge
Deepedgecomputing
Regionaldatacenters,CDN(contentdeliverynetworks),telecomdatacenters,hostingservice
providers
Deepedgecomputing
Localdatacenters,heavy-edgeservers,microdata
centers(integratedcabinets)
Far
Edge
Aggregationanalysisandcontrol,data
management
AIBox,MEC,HCI(hyper-converged
infrastructure)
Aggregation,conversion,filtering,data
reduction,forwarding
Gateways,smallcells,routers,accesspoints
Analogtodigitalconversion(sensors),sendingcontroldata(actuators),direct
analysis/control
Industrialcomputers,PLC(programmablelogic
controller),DCS(distributedcontroller),etc.
Edgecomputinghardwareproductshavetheiruniquecharacteristics,distinctfromthehardwareproductsofcloudcomputingandedgecomputing.Thereasons
behindthisdistinctionaretheprimarydemandsfacedbyedgecomputing:
(Ⅰ)Diverseandcomplexapplicationscenarios:
(1)Thediversityinedgedeploymentrequiresdifferentinfrastructurecombinations.Edgedeploymentspansvariousindustryapplications,userscenarios,andverticaldomains.Itincludesawiderangeofinfrastructuresolutions,makingtheedgesolutionecosystemhighlycomplexintermsofproductforms,configurations,
andmanagementtools.
(2)Edgecomputingisexperiencingrapidgrowthinindustriessuchastelecommunications,utilities,manufacturing,andfinance.Telecomoperatorsareactivelybuildingedgecomputingplatforms,leadingmarketdevelopment.Otherindustries,particularlyutilities,manufacturing,andfinance,arealsoacceleratingthe
adoptionofedgecomputingbydeployingdedicatededgeinfrastructuretoenhance
15/123
efficiencyinusecasessuchastheIndustrialInternet,gridmanagement,andsmart
commercialbuildings.
(3)ThevigorousdevelopmentoftechnologieslikeAI,machinelearning,bigdatamodels,andheterogeneouscomputingfurtherpropelsthegrowthoftheedgecomputingmarket.Theproliferationofcompute-intensiveanalyticalworkloadsisubiquitousinmanyindustriesandusecases,unlockingthepotentialofuntappeddata,mostofwhichresidesorisgeneratedattheedge.TheexpectedconvergenceofAI-nativecomputingcapabilitieswiththeperformancerequirementsofnewanalyticalplatformswilldrivethegrowthofmanynewedgeinfrastructuredeployments.ThediversityofAIapplicationsalsodiversifiesthedemandforedgecomputinghardware,
software,services,andsolutions.
(Ⅱ)Longlifecycleproductdemands:
(1)Inedgecomputingapplicationsacrossvariousindustriesliketransportation,healthcare,energy,andindustry,suchasrailtrafficcontrolsystems,mediumtolargemedicalequipment,substation/distributionstationcontrolunits,andindustrialcontrolDCS/MES,theproductsoftengothroughalonglifecycleinvolvingstagesofproductdesign,researchanddevelopment,testingandverification,implementationandoperation,andlatermaintenance.Therefore,5-7yearsorevenlongerlifecycleforedge
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度二手房产投资购买合同
- 2024年度技术服务合同:大数据分析服务合同
- 2024年度广告投放租赁合同
- 2024年度大数据分析与应用委托开发合同
- 2024年度环保项目合作开发合同标的及合作方式
- 2024年度智慧城市基础设施采购与建设合同
- 2024年度咨询服务合同详解
- 电影放映员劳动合同范例
- 2024年度企业合规审核服务合同
- 2024年度智能无人机配送系统建设合同
- M1050A标准型无心磨床的正确使用和维护
- 肺源性心脏病患者的护理
- 食品行业安全风险分级管控清单(台账)
- 导线测量和导线计算教学课件
- 动静脉内瘘栓塞的原因分析及干预措施课件
- 小学一年级10以内加减法口诀表
- 换热站的安装调试
- 2023年副主任医师(副高)-内科学(副高)考试历年真题摘选带答案
- 设备管理基本知识专题讲座
- 幼儿园中班数学鲜花分一分教案ppt【幼教课件】
- 防洪评价课件
评论
0/150
提交评论