




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/64
Contents
1.Preface 2
2.ProgressofRelevantStandardOrganizations 3
2.1.3GPP 4
2.2.IMT-2030PromotionGroup 5
2.3.NextGAlliance 5
2.4.Hexa-X 6
2.5.6GANA 7
3.6GDataServiceScenariosandRequirementAnalysis 7
3.1.SensingData 7
3.2.AIModelTrainingData 10
3.3.AIModelData 11
3.4.DataServicesBasedonDistributedArchitecture 14
3.5.User-CenteredDataManagementandControl 15
3.6.DatainIntegratedSatellite-TerrestrialCommunicationScenarios 17
3.7.SOEDataAcquisition 18
3.8.Self-GeneratedDataServices 20
3.9.DataBenefits 21
3.10.Summaryof6GDataRequirements 23
4.DefinitionandFrameworkofthe6GDataPlane 24
4.1.Definition 24
4.2.NecessityoftheDataPlane 26
4.3.6GDataPlaneFramework 27
5.KeyTechnologiesof6GDataPlane 34
5.1.DataBearerandTransmissionProtocol 34
5.2.AirInterfaceDataPlane 36
5.3.CoreNetworkDataPlaneFunctionsandArchitecture 39
5.4.CoreNetworkDataPlaneTransmissionProtocol 40
5.5.AIModelDataCompressionTechnology 42
5.6.DistributedDataTechnology 44
5.7.ServiceInterfaceTechnologyBasedonSemanticGraph 46
5.8.CoordinationbetweenDataServicesandOtherServices 52
6.DataPlanePrototype 54
6.1.DataPlanePrototype1 54
6.2.DataPlanePrototype2 55
7.SummaryandOutlook 57
8.References 59
9.Abbreviations 61
10.ContributorstotheWhitePaper 64
2/64
1.Introduction
5Gsupportsthreescenarios:enhancedMobileBroadband(eMBB),Ultra-ReliableLow-LatencyCommunications(URLLC),andmassiveMachineTypeCommunication(mMTC).Exposureofcapabilitiesandeventsissupportedthroughthenetworkexposurefunction(NEF)orcommonAPIframework(CAPIF).Applicationfunctions(AFs)canobtainthedataofthe5GsystemviaNEF/CAPIF,whichpromotescross-layerinnovationbetweenthenetworkandAF.Asthevolumeofdatageneratedbymobilenetworkscontinuestogrow,theneedfordatacollectionanddataprocessinghasbecomeincreasinglyprominent.Correspondinglynetworkserviceshaveevolvedfromcommunicationservicetomultidimensionalservicesofcommunication,sensing,andartificialintelligence(AI).Traditionalmethodsofdatacollectionanddataprocessingarenotadaptedtonewchanges,anditisdifficulttomeettheadditionaldatarequirements.Thisisbecause5Gnetworksdonothaveaunifieddatamanagementframework.Asaresult,multipletypesofdatacannotbeintegratedorcoordinatelymanaged,whichmayincreasethecomplexityandcostsofdatagovernance.Focusingondatapipelines,5Gnetworksdonotfullyexploreorutilizethevalueofdata.Basedontheexistingmethods,datacollectionanddataprocessingrequirementsofvarioustypesofdatacannotbemet.Thedatavalueofcommunication,sensingandAIcannotbeexplored.Moreover,rightsandinterestsofdatacannotbeguaranteed.Thereisnotaunifieddatamanagementandcontrolframeworkfordataqualitymanagementtocannotguaranteethelegality,authenticity,andintegrityofdata.Therefore,5Gnetworkscannotmeettherequirementsofdataregulatorytheexpectationofprivacyandsecurityofusers.Intheaspectsofnewservices,itisdifficultfor5Gnetworkstoefficientlycollect,transmit,processandanalyze
largeamountsofdatainmobilenetworks,suchassensingdata,AImodel,etc.
Figure1-1LifeCycleManagementofDatainMobileNetwork
3/64
Datahasbecomeoneoftheproductionfactorsinthedigitalsociety.6Gisanimportantinfrastructureofdigitalsociety.Thedataofthe6Gsystemisinevitablyanimportantpartofthisproductionfactor.The"FrameworkandoverallobjectivesofthefuturedevelopmentofIMTfor2030andbeyond"[1],releasedbyInternationalTelecommunicationUnion-RadioCommunicationSector(ITU-R),proposessixmajorscenarios,includingImmersiveCommunication,MassiveCommunication,HyperReliableandLow-LatencyCommunication,UbiquitousConnectivity,AIandCommunication(AIAC),andIntegratedSensingandCommunication(ISAC).Thismeansthat6Gisamobilecommunicationsystemthatgoesbeyondcommunicationservices.Inadditiontotraditionaldatatransmissionpipelines,6Gintroducesinternaldataofmobilenetwork,suchassensingdatainISACandAIdatainAIAC,etc.Dataprovidersordataconsumersofmobilenetworkinternaldataincludeuserequipment(UE),radioaccessnetwork(RAN)nodes,andnetworkfunctions(NFs)ofcorenetwork(CN)andAFs.Incontrasttouserdataintraditionaldatatransmissionpipelines,the6Gsystemistaskedwithmanagingtheentirelifecycleofinternaldata,includinggeneration,securityandprivacy,coordinationofcollection,transmission,processing,
qualitymanagementanddataservice.
Therefore,adataplane[2]isintroducedtoenableaunifiedandefficientlifecyclemanagementofinternaldataofthe6Gnetwork.Forexample,thedataplaneprovidesdatarequiredbythesensingfunctionorNEF,sothatthe6Gsystemcanprovidethesensingserviceornetworkexposureservices.The6GDataPlane(DP),whichoperatesparalleltothecontrolplane(CP)anduserplane(UP),isnotconstrainedbythetransmissionrequirementsofsignalingoruserdata.ThisallowsthefunctionsandconfigurationsofDPprotocolcanbeoptimizedtoprovideabettersolutiontotheaforementionedneeds.Thisavoidsfragmentedsolutionsforindividualusecases.TheDPwillprovideaunifieddatamanagementframeworkforthe6Gsystem,enablingdatacapabilities.Asaresult,the6Gsystemwillbeabletointegrateandmanagemultipletypesofdata,ensuredatasecurityandtrustworthiness,breakdatasilos,improvetheefficiencyofdatagovernance,protectrightsandinterestsofdata.InthisWhitePaper,contributorsillustrateourinitialviewsandlatestachievementsonthescenariosandrequirementsof6Gdataservice,thedefinitionandframeworkofDP,keytechnologies,andprototypes,hopefullycontributingto6G
development.
2.ProgressofRelevantStandardOrganizations
Thischapterdescribesthe6GDPresearchprogressofmultiplestandardorganizationsandresearchinstitutionsaroundtheworld,including3rdGenerationPartnershipProject(3GPP),IMT-2030(6G)PromotionGroup,NextGAlliance,Hexa-X,and6GAllianceofNetworkAI(6GANA).Thesestandardorganizationshavedoneresearchesonthedatacollectionrequirements,
challenges,solutions,andtechnologytrendsof6G.
4/64
2.1.3GPP
Basedondatarequirementsofeachusecase,severalstandardsof5Gnetworkshavebeenstudiedandstandardizedtosupportdatacollectionanddataanalysis.Forexample,[3]isusedtocollectdataforthenetworkdataanalyticsfunction(NWDAF),whichistheAIfunctionofCN.Inaddition,therearestandardsofNEF/CAPI[4][5]fordatacollectionofnetworkexposure.ThereareLTEPositioningProtocol(LPP)[6]andNRPositioningProtocolA(NRPPa),whichareusedtotransmitpositioningdataforthelocationmanagementfunction(LMF).Thereareminimizationofdrivetest(MDT)[7]andqualityofexperience(QoE)usedforwirelessnetworkoptimizationand
management.
TomeetdatacollectionrequirementsoftheNWDAF,Release17introducestheDataCollectionCoordinationFunction(DCCF)tothe5GnetworktocollectdatafromNFsanddistributeresultsrequestedbyNFs[2].TheDCCFpreventsdataproviders,suchastheAccessandMobilityManagementFunction(AMF)andSessionManagementFunction(SMF)fromhandlingmultiplesubscriptionstothesamedataandsendingmultiplenotificationscontainingthesameinformationduetonocoordinationbetweendataconsumers.ExcepttheNWDAF,5GCNNFs,suchastheAMFandSMF,asmainnetworkelements(NEs)ofthecommunicationnetwork,mainlyprovidecommunicationservicesinsteadofdata.However,theNWDAFgenerallyneedstoobtainalargeamountofdataforbigdataanalysis.Repeatedreportingofalargeamountofidenticaldatadecreasestheperformanceof5GCNNFs.TheNWDAFcansubscribeorunsubscribedatafromtheDCCFthroughtheNdccfinterface.IftheDCCFhasnotpreviouslycollectedthedatarequestedbytheNWDAF,itcanusetheservice-basedinterface(SBI)tocollectthedatafromNFsorcollectdatathroughthemessagingframework.Subsequentlythedatacanbe
transmittedtotheNWDAFthrougheitherSBIormessagingframework.
FortheoptimizationandmanagementofRAN,thenetworkmanagementfunctioncansendanMDTorQoErequesttotheRANnode,whichtriggerstheRANnodetoconfigureMDTorQoEdatacollectiontotheUEs.TheMDTorQoEdatareportedbytheUEissenttothetracecollectionentity(TCE)ormeasurementcollectionentity(MCE)foranalysisthroughtheservicingRANnode.ThenetworkmanagementfunctionoptimizesconfigurationsofRANbasedonthe
self-organizingnetwork(SON).
TheLPPisusedtoexchangepositioningcontrolinformationandpositioningdatabetweentheUEandthenetwork.Generally,theamountofpositioningdataisnotlarge.Therefore,theLPPiscarriedontheCPprotocolstack.Inotherwords,thepositioningprotocolstackconsistsoftheLPP,non-accessstratum(NAS),RadioResourceControl(RRC),PacketDataConvergenceProtocol(PDCP),RadioLinkControl(RLC),MediumAccessControl(MAC),andPhysicalLayer(PHY).BasedonpositioningmeasurementdatatransmittedbytheLPP,theLMFestimates
thelocationinformationofUEsandprovidesitto5GNFsorAFs.
5/64
2.2.IMT-2030PromotionGroup
In6GNetworkArchitectureVision[8],IMT-2030PromotionGroupproposedthatthe6Gnetworkarchitecturerequiresakindofdatafunctionswhicharedifferentfromthetraditionaluserplane.Thedatafunctionssystematicallyaddressthechallengesofmanagingandmonetizingnon-traditionaluserplanedatainthe6Gnetwork.FromtheperspectiveofNFlayer,6Gdatafunctionsconsistofdataorchestrationandcontrol,dataprocessingandforwarding,anddatastorage.Basedonthecapabilityreportedbydataprocessingandforwardingnodesandrequirementsofdataservice,thedataorchestrationandcontrolnodeselectsthedatasourcenodes,processingandforwardingnodes.Basedonorchestration,theselectednodesformadatabearertoprovidedataservices.Thedataprocessingandforwardingnodeprovidesdataservicesasrequired,suchasdatacollection,datapreprocessing,datastorage,dataprivacyprotection,securityandtrustworthiness,dataanalysis,datasharing,anddataforwarding.Thestandardizationofdatalifecyclemanagementcanimprovedatacomparabilityandreusability,whichincludesprocessessuchasdataprivacy,securityandtrustworthiness,datacoordination,generation,andcollection,datastorage,datatransmission,dataprocessing,dataservice,anddataqualitymanagement,rightsand
interestsmanagement,etc.
In6GWirelessSystemDesignPrinciplesandTypicalFeatures[9],IMT-2030PromotionGroupproposedthatefficientdatagovernance,aunifieddatacollectionmethod,anddatalifecyclemanagementshouldbeconsideredatthebeginningof6Gsystemdesign.Nativedataisoneoftheprinciplesfor6Gwirelesssystemdesign.Thedesignofnativedatashouldensuredatasecurityandprivacy,improveefficiencyofdatacollection,transmission,andstorage.Thedesignofnativedatashouldalsoenhancedatasharingandreusability.Nativedatabuildsanopenandunifieddatalifecyclestandardtosupportallprocessesofubiquitousheterogeneousdatacirculation.Withcost-effective,efficient,andreliabledataservices,itenables6Gnetworksandassociatedindustriestoprocessandanalyzevarioustypesofdataaccuratelyandsystematically,so
astomakebetterdecisionsandprovidehigherqualityservices.
In6GDataServiceArchitectureResearch[10],IMT-2030PromotionGroupproposed6Gdataservicesandthedataplanearchitectureofthe6Gnetwork,anddescribedthefunctionoforchestrationandcontrol,processingfunctionsandsoon.In5G,therearematureprotocolstacksofCPandUPtosupportcommercialdeploymentandapplications.Theexistingprotocolstacksdecouplefunctionsbetweenplanes,andachievemodular,virtualized,andsoftware-basedfunctionmanagement.The6Gdataplanealsorequirescomplete,flexible,andscalableprotocolstackstosupportdataforwardingandcontrol,dataserviceexposure,dataagentmanagementandcontrol,
etc.
2.3.NextGAlliance
6/64
Inthe6GTechnologiesforWide-AreaCloudEvolution[11],theNextGAllianceproposedthatinadditiontocommunicationservices,computinganddataplaneswithdedicatedcomputinganddatamanagementfunctionsmaybeintroducedtocellularnetworks.The6GTechnologiesforWide-AreaCloudEvolution[11]drivesnetworkarchitecturedesignandintroducesnewfunctionsintermsof6Gnetworkcomputingservicestosupportdistributedcomputingandtightinterworkingbetweenthedistributedcloudand3GPPprotocols.Therefore,changesinthecontrol,management,anddataplanesneedtobestudiedtoadapttothedistributedcomputingprocess.Accordingtothereportcontent,thedataplaneissimilartotheuserplaneofexistingprotocols.It
ispossibletomeetcomputingservicerequirementsbyenhancingthedatabearer.
IntheAI-nativeWirelessNetworks[12],theNextGAllianceproposedthatcomparedwiththeapplicationsofAI/machinelearning(ML)in5G,AI/MLin6Gshouldhavethefollowingfeatures:Datacollectionwillbeatvariouslayerswithinthenetwork.Inadditiontonear-real-timemannerofAI/MLapplicationsof5G,AI/MLapplicationsfor6Gwilloperateinthereal-timemanner.AI/MLwillbeblendedintothedesignof6GandthetransceiversmaybedesignedtobeAI-nativeatthebeginningof6G.Therefore,itisnecessarythatAI/MLbeentrenchedinthedesignofradiolayerswithinterfacingtoAIanddata-collectionframeworks.Theseinteractionsneedastrongemphasisonsecurityandprivacy.ThisAInativemethodensuresrapidevolutionofwireless
technologies,whichmaybepartialindependentofstandardscycles.
2.4.Hexa-X
IntheDraftfoundationfor6Gsystemdesign[13],Hexa-XproposedthatthedatacollectionandAIframeworksarepervasivefunctionalitiesofthe6Gsystem.Thedatacollectionframeworksupportseveraldifferenttypesofdataandinformationtobecollectedfrommultipledomainsandlayersofthenetworkandmovedwithinthenetworkforanalysis.Datatransmissionandintegrationwilltakeplaceconsideringprivacyandownershipconcernsofallstakeholders.Couplingdataacrossapplicationsandnetworkswillprovidetheopportunitytoimprovethenetworkperformanceorenablenetworkawareapplications.Thedatacollectionframeworkcollectsthedatarequiredbythenetworkmanagementfunctionandsupportsreal-timecontroland
operationstoprocessrequireddata.
IntheFoundationofoverall6Gsystemdesignandpreliminaryevaluationresults[14],Hexa-XproposedthatAIneedsnovelarchitecturalelementsthatenableforprivacyawaredatacollectionandlearning.Data-drivennetworkcontrolunitsandUEaggregationunitsareintroducedtosupportdatasharingbetweenthenetworkandUEs,soastoimprovecontrolanddecisions.Basedondataprivacyrequirements,UE-orienteddatacollectionandlearningenableUEstotakeadvantageofnetworkinformationalongwithon-devicecontextualinformation(useractivity,intent,andusagepatterns)toassistthenetworkinconnectivitydecisions,i.e.,toimprove
theconnectivityQoE.
7/64
2.5.6GANA
Inthe6GDataService-ConceptandRequirement[15],6GANApointedoutthatthe6Gnetworkprovidesnewcapabilities,suchasnativeAI,nativesensing,andnativesecurityinthecontextofintegratedcommunication,sensing,andcomputing.Basedontheinformationtransmissioncapabilitiesoftraditionalmobilecommunicationnetworks,thenewcapabilitiesenhancethedataproductionandconsumptioncapabilitiesofthenetworkandmakethe6Gnetworkaplatformforinformationanddatacirculation.Efficientmanagementofdatacarriedonthe6Gnetworkisakeytechnologyofthe6Gnetwork.Therefore,basedonthetrusteddataserviceframeworkproposedintheWhitePaperon6GDataServiceConceptandRequirements[15],the6Gnetworkwillintroduceanindependentdataplane.The6Gdataplanebuildsarchitecture-levelunifiedandtrusteddataservicestoclarifythedatasource,description,
collection,processing,storage,application,andprivacyprotection.
3.6GDataServiceScenariosandRequirementAnalysis
6Gdataservicesindicatethatthe6Gsystemprovidesdataresourcestointernalfunctions,suchastheUE,RAN,andCN.Thecollecteddatacanbeusedbynetworkcapabilityexposurefunctions(suchastheNEForCAPIF)toprovidedatanetworkcapabilitiesoreventtoexternalfunctionsofthe6Gsystem,suchasAFs.Inaddition,thecollecteddatacanbeusedbythesensingfunctiontoprovidesensingservicestoAFsorNFs,orbeusedbytheAIfunctionstoprovide
assistanceinformationforthecontrolandoptimizationofnetworks.
Withdataasthecoreelement,6Gdataservicesaimtofullyutilizethevalueof6Gdata,soastobreakthroughtheboundariesofsingle-dimensionalmobileservicesandpromoteintegratedinnovationofservices.Thedataof6Gnetworksindicatethedatageneratedorobtainedbythe6Gsysteminsteadofthedatainthetraditionaluserplane.ItincludesthedatageneratedbytheUEs,RAN,CN,andnetworkmanagementfunctionsduringtheoperationsofcommunicationservices.Italsoincludessensingdata(e.g.,sensingmeasurements)andAIdata(e.g.,AImodel)generatedbyUEs,RAN,CNandnetworkmanagementfunctionsduringtheoperationsofnewservices(e.g.,sensingservices,AIservices).Theshareabledataobtainedbythe6Gnetworksfromthirdpartiesisalsoincluded,suchasvarioustypesofsensorinformation(includingtemperature,humidity,andenvironment)andgeographicinformationsystem(GIS)information.Thischapterdescribes
scenariosof6Gdataserviceandanalyzespotentialrequirements.
3.1.SensingData
3.1.1.Description
8/64
Sensingdatainthe6Gsystemisthedatadescribingthephysicalworldstatusobtainedthroughradiowavesorothersensorsduringphysicalworldexploration.Sensingdatamainly
includesnativesensingdata,externalsensingdata,andmulti-modalintegratedsensingdata.
>Nativesensingdata
The6Gmobilecommunicationsystemhasasensingfunction,thatis,nativesensing.Nativesensingdataisthedatageneratedduringnativesensingofthe6Gmobilecommunicationsystem.ItincludesnativesensingmeasurementdataobtainedbytheUEorRANnodebasedonairinterfacesignalmeasurement,andnativesensingresults.Generally,thenativesensingmeasurementdataincludestwotypes.Oneisthedataobtainedduringsensingmeasurementtoassistindatacommunication,suchasthedatameasuredforsensingthechannelenvironment.Theotheristhedatameasuredpurelyforsensingthetargetobjectorenvironment,suchasthesignalstrengthandarrivaltimemeasuredduringpositioning,andtheRFsignaldatameasuredduringranging,speedmeasurement,andimaging.Throughnativesensing,the6Gsystemobtainsthe
sensingresults,suchastheposition,speed,andimagingofthesensingtarget.
>Externalsensingdata
Externalsensingdataisthedatathatthe6Gsystemobtainsfromexternalthird-partyIoTsensorsorGIS,whichincludesintermediatemeasurementdataandsensingresults.Thedataisnotinvisibledatathatistransparentlytransmittedonthenetwork.Itneedstobeprocessedbythesensingmoduleofthe6Gsystemtogeneratesensingmeasurementintermediatedataorevenusablesensingresults.Forexample,the6Gsystemconnectstoautomaticrecognitionequipment,suchasbarcoderecognition,imagerecognition,andradiofrequencyidentification(RFID)toobtaintargetinformation,andconnectstovarioustypesofsensorstoobtainphysicalinformation,suchasbiomass,chemical,heat,pressure,temperature,sound,light,electricity,andvibrationinformation.Thesensorsmainlyincludemechanicalsensors(suchasthedisplacementsensorandlevelsensor),geometricsensors,forcesensors(suchasthepressuresensorandspeedsensor),thermalsensors(suchasthetemperaturesensor),opticalsensors(suchastheimagesensorandinfrared/ultravioletsensor),electromagneticsensors(suchastheelectricfieldsensorandvoltagesensor),acousticsensors(suchasthesoundsurfacewavesensorandultrasonicsensor),raysensors,humiditysensors,gassensors(suchasthegascompositionsensorandgasconcentration
sensor),ionsensors(suchasthePHsensors),physiologicalsensors,andbiochemicalsensors.
>Multi-modalintegratedsensingdata
Comparedwithnativeorexternalsensingdata,multi-modalintegratedsensingdatafocusesonintegratedprocessingofthesetwotypesofdata.Inthe6Gsystem,multi-modalsensingdataincludesnativeandexternalsensingdata,whichcanbeprocessedseparatelyorgeneratenew
sensingdataorsensingresultsthroughintegratedsensing.Multi-modalintegratedsensing
9/64
incorporatesnativesensingandexternalsensing.Itintegratesdatafrommultiplesensingchannelsforunderstandingandprocessing.Varioustypesofsensingdatacollaborate,complement,revise,andenhanceeachothertogeneratebettersensingresultsthansingletypesofsensingdata.Forexample,inanindoorenvironmentcoveredbythelandmobilecommunicationsystemandInternetofThings(IoT)terminals,cellularpositioningdatacanbeusedtogetherwithdataofexternalIoTsensingdevices,suchasWi-Fi,Bluetooth,Zigbee,andUWBpositioningdatato
generatemulti-modalintegratedsensingdata.
3.1.2.PotentialRequirements
Inthe6Gsystem,varioustypesofsensingareavailable,andthesensingdataisextensive.Thenewandoptimizedsensingfunctioncausesahugeamountofdatainthelandmobilecommunicationsystem.Inadditiontonativesensing,the6Gsystemneedstoprocessandtransmit
externalsensingdataandmulti-modalintegratedsensingdata.
Specifically,thefunctionalrequirementsonthe6Gsystemareasfollows:
1)Datacollection:Duringnativesensing,the6GsystemusessignalingtomeasureparameterstransmittedthroughradiowavesandRFchannelsandcollectssensingdatafromvarioustypesofIoTsensingdevicesoverdifferentinterfaces.
2)Dataprocessing:The6Gsystemprocessesthecollectedsensingdata.ThroughAImodeltraining,computing,andotherprocessingmethodsforsensingdataobtainedfromvarioussensingchannels,usablesensingresultsareobtained.Theusablesensingresultsassistindecisionmakingandexecutionofcommunicationorotherfunctionsinthe6Gsystem,orareusedasinputparameterstoassistsomeapplications.Duringmulti-modalintegratedsensing,datafrommultiplesensingchannelscanbecollaborativelyprocessedtoensurebettersensingperformance.
3)Datatransmission:Inthe6Gsystem,massivevolumeofsensingdataneedstobetransmitted.Theintermediatemeasurementdataneedstobetransmittedtonetworkorcomputingnodesforintegrationandcalculation,soastoobtainsensingdataorsensingresults.Forexample,duringcellularpositioning,measurementdata,includingthesignalstrengthandsignalarrivaltimebetweenaUEandmultipleRANnodesneedsto
betransmittedandintegratedtoobtainthelocationinformationoftheUE.
Theperformancerequirementsonthe6Gsystemareasfollows:
1)Duetomassivevolumeofsensingdatainthe6Gsystemanddifferentsensingdatarequirementsofvarioustypesofapplications,the6Gcommunicationsystemneedstohavegoodtransmissionperformance,includingthebandwidthandlatency.AccordingtoStudyonScenariosandRequirementsof5G-AdvancedIntegratedSensingandCommunication[16],thesensingdatarateisabout1kbpsto10Mbps.
2)Tocalculateandmakedecisionsonmassivevolumeofsensingdata,the6GsystemneedstohavestrongcomputingpowerandbetterperformanceforAImodelsand
10/64
variousalgorithms.
3)Sensingdatainvolvesalargeamountofuserprivacybecauseitcomesfromphysicalstatusinformationaboutpeople,device,andenvironmentrelatedtoToBorToCusers.The6Gsystemneedstomeetapplicationrequirementsandensureusersecurityandprivacywhenperformingsensing.
3.2.AIModelTrainingData
3.2.1.Description
Onthe5GCN,theNWDAFismainlyusedforprediction,suchasUElocationpredictionandNEloadpredictioninAIanalysisscenarios,suchasdataandmodeltrainingandmodelinference.Insuchscenarios,asmall-scaleneuralnetworkmodel,suchastherecurrentneuralnetwork(RNN),convolutionalneuralnetwork(CNN),orlongshort-termmemory(LSTM)isused.Generally,themodelcontainsthousandstohundredsofthousandsofparameters.TheMTLFneedstocollecttenstohundredsofmegabytesofmodeltrainingdatatotrainamodel.The6GnetworkhasmoreextensiveAIanalysisscenarios,suchasobjectrecognitionandtrajectoryplanningbasedonsensingdataandnetworkpolicycontrolbasedonnetworkdata.Drivenbydiversescenarios,the6Gnetworkrequireslarger-scaleandmorecomplexmodelsforinferenceandanalysis.Academicresearchresultsshowthattheamountofdatarequiredtotrainamodelisproportionaltothemodelsize.Totrainamodelwith100millionmodelparameters,atleast8GB
dataisrequiredforpre-training,andotherspecifi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深海探险起点:船舶租赁合同揭秘
- 飞行员培训合同合作意向范本
- 车险代理合同书样本
- 企业员工培训合作协议合同
- 股权激励实施合同协议
- 施工领域农民工劳动合同模板
- 汽车购销合同其一:条款解析
- 小学生心理课件
- 无线广播电视传输中的信号传输信道分配考核试卷
- 天然气储层渗透性改善技术考核试卷
- 2024年甘肃天水麦积山石窟艺术研究所招聘工作人员考试真题
- 2025年山东省荣成市属事业单位招聘岗位及历年高频重点模拟试卷提升(共500题附带答案详解)
- 火星表面材料分析-深度研究
- 《职业技能等级评价规范编制指南编制说明》
- 《教育强国建设规划纲要(2024-2035年)》解读讲座
- 畜禽养殖场恶臭污染物排放及其处理技术研究进展
- 超声内镜引导下穿刺活检术的配合及护理
- 新生儿常见的产伤及护理
- 代写回忆录合同
- 2024年10月自考00149国际贸易理论与实务试题及答案
- 天耀中华合唱简谱大剧院版
评论
0/150
提交评论