2024 全球6G技术大会 -10.0D 6G Data Plane_第1页
2024 全球6G技术大会 -10.0D 6G Data Plane_第2页
2024 全球6G技术大会 -10.0D 6G Data Plane_第3页
2024 全球6G技术大会 -10.0D 6G Data Plane_第4页
2024 全球6G技术大会 -10.0D 6G Data Plane_第5页
已阅读5页,还剩120页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/64

Contents

1.Preface 2

2.ProgressofRelevantStandardOrganizations 3

2.1.3GPP 4

2.2.IMT-2030PromotionGroup 5

2.3.NextGAlliance 5

2.4.Hexa-X 6

2.5.6GANA 7

3.6GDataServiceScenariosandRequirementAnalysis 7

3.1.SensingData 7

3.2.AIModelTrainingData 10

3.3.AIModelData 11

3.4.DataServicesBasedonDistributedArchitecture 14

3.5.User-CenteredDataManagementandControl 15

3.6.DatainIntegratedSatellite-TerrestrialCommunicationScenarios 17

3.7.SOEDataAcquisition 18

3.8.Self-GeneratedDataServices 20

3.9.DataBenefits 21

3.10.Summaryof6GDataRequirements 23

4.DefinitionandFrameworkofthe6GDataPlane 24

4.1.Definition 24

4.2.NecessityoftheDataPlane 26

4.3.6GDataPlaneFramework 27

5.KeyTechnologiesof6GDataPlane 34

5.1.DataBearerandTransmissionProtocol 34

5.2.AirInterfaceDataPlane 36

5.3.CoreNetworkDataPlaneFunctionsandArchitecture 39

5.4.CoreNetworkDataPlaneTransmissionProtocol 40

5.5.AIModelDataCompressionTechnology 42

5.6.DistributedDataTechnology 44

5.7.ServiceInterfaceTechnologyBasedonSemanticGraph 46

5.8.CoordinationbetweenDataServicesandOtherServices 52

6.DataPlanePrototype 54

6.1.DataPlanePrototype1 54

6.2.DataPlanePrototype2 55

7.SummaryandOutlook 57

8.References 59

9.Abbreviations 61

10.ContributorstotheWhitePaper 64

2/64

1.Introduction

5Gsupportsthreescenarios:enhancedMobileBroadband(eMBB),Ultra-ReliableLow-LatencyCommunications(URLLC),andmassiveMachineTypeCommunication(mMTC).Exposureofcapabilitiesandeventsissupportedthroughthenetworkexposurefunction(NEF)orcommonAPIframework(CAPIF).Applicationfunctions(AFs)canobtainthedataofthe5GsystemviaNEF/CAPIF,whichpromotescross-layerinnovationbetweenthenetworkandAF.Asthevolumeofdatageneratedbymobilenetworkscontinuestogrow,theneedfordatacollectionanddataprocessinghasbecomeincreasinglyprominent.Correspondinglynetworkserviceshaveevolvedfromcommunicationservicetomultidimensionalservicesofcommunication,sensing,andartificialintelligence(AI).Traditionalmethodsofdatacollectionanddataprocessingarenotadaptedtonewchanges,anditisdifficulttomeettheadditionaldatarequirements.Thisisbecause5Gnetworksdonothaveaunifieddatamanagementframework.Asaresult,multipletypesofdatacannotbeintegratedorcoordinatelymanaged,whichmayincreasethecomplexityandcostsofdatagovernance.Focusingondatapipelines,5Gnetworksdonotfullyexploreorutilizethevalueofdata.Basedontheexistingmethods,datacollectionanddataprocessingrequirementsofvarioustypesofdatacannotbemet.Thedatavalueofcommunication,sensingandAIcannotbeexplored.Moreover,rightsandinterestsofdatacannotbeguaranteed.Thereisnotaunifieddatamanagementandcontrolframeworkfordataqualitymanagementtocannotguaranteethelegality,authenticity,andintegrityofdata.Therefore,5Gnetworkscannotmeettherequirementsofdataregulatorytheexpectationofprivacyandsecurityofusers.Intheaspectsofnewservices,itisdifficultfor5Gnetworkstoefficientlycollect,transmit,processandanalyze

largeamountsofdatainmobilenetworks,suchassensingdata,AImodel,etc.

Figure1-1LifeCycleManagementofDatainMobileNetwork

3/64

Datahasbecomeoneoftheproductionfactorsinthedigitalsociety.6Gisanimportantinfrastructureofdigitalsociety.Thedataofthe6Gsystemisinevitablyanimportantpartofthisproductionfactor.The"FrameworkandoverallobjectivesofthefuturedevelopmentofIMTfor2030andbeyond"[1],releasedbyInternationalTelecommunicationUnion-RadioCommunicationSector(ITU-R),proposessixmajorscenarios,includingImmersiveCommunication,MassiveCommunication,HyperReliableandLow-LatencyCommunication,UbiquitousConnectivity,AIandCommunication(AIAC),andIntegratedSensingandCommunication(ISAC).Thismeansthat6Gisamobilecommunicationsystemthatgoesbeyondcommunicationservices.Inadditiontotraditionaldatatransmissionpipelines,6Gintroducesinternaldataofmobilenetwork,suchassensingdatainISACandAIdatainAIAC,etc.Dataprovidersordataconsumersofmobilenetworkinternaldataincludeuserequipment(UE),radioaccessnetwork(RAN)nodes,andnetworkfunctions(NFs)ofcorenetwork(CN)andAFs.Incontrasttouserdataintraditionaldatatransmissionpipelines,the6Gsystemistaskedwithmanagingtheentirelifecycleofinternaldata,includinggeneration,securityandprivacy,coordinationofcollection,transmission,processing,

qualitymanagementanddataservice.

Therefore,adataplane[2]isintroducedtoenableaunifiedandefficientlifecyclemanagementofinternaldataofthe6Gnetwork.Forexample,thedataplaneprovidesdatarequiredbythesensingfunctionorNEF,sothatthe6Gsystemcanprovidethesensingserviceornetworkexposureservices.The6GDataPlane(DP),whichoperatesparalleltothecontrolplane(CP)anduserplane(UP),isnotconstrainedbythetransmissionrequirementsofsignalingoruserdata.ThisallowsthefunctionsandconfigurationsofDPprotocolcanbeoptimizedtoprovideabettersolutiontotheaforementionedneeds.Thisavoidsfragmentedsolutionsforindividualusecases.TheDPwillprovideaunifieddatamanagementframeworkforthe6Gsystem,enablingdatacapabilities.Asaresult,the6Gsystemwillbeabletointegrateandmanagemultipletypesofdata,ensuredatasecurityandtrustworthiness,breakdatasilos,improvetheefficiencyofdatagovernance,protectrightsandinterestsofdata.InthisWhitePaper,contributorsillustrateourinitialviewsandlatestachievementsonthescenariosandrequirementsof6Gdataservice,thedefinitionandframeworkofDP,keytechnologies,andprototypes,hopefullycontributingto6G

development.

2.ProgressofRelevantStandardOrganizations

Thischapterdescribesthe6GDPresearchprogressofmultiplestandardorganizationsandresearchinstitutionsaroundtheworld,including3rdGenerationPartnershipProject(3GPP),IMT-2030(6G)PromotionGroup,NextGAlliance,Hexa-X,and6GAllianceofNetworkAI(6GANA).Thesestandardorganizationshavedoneresearchesonthedatacollectionrequirements,

challenges,solutions,andtechnologytrendsof6G.

4/64

2.1.3GPP

Basedondatarequirementsofeachusecase,severalstandardsof5Gnetworkshavebeenstudiedandstandardizedtosupportdatacollectionanddataanalysis.Forexample,[3]isusedtocollectdataforthenetworkdataanalyticsfunction(NWDAF),whichistheAIfunctionofCN.Inaddition,therearestandardsofNEF/CAPI[4][5]fordatacollectionofnetworkexposure.ThereareLTEPositioningProtocol(LPP)[6]andNRPositioningProtocolA(NRPPa),whichareusedtotransmitpositioningdataforthelocationmanagementfunction(LMF).Thereareminimizationofdrivetest(MDT)[7]andqualityofexperience(QoE)usedforwirelessnetworkoptimizationand

management.

TomeetdatacollectionrequirementsoftheNWDAF,Release17introducestheDataCollectionCoordinationFunction(DCCF)tothe5GnetworktocollectdatafromNFsanddistributeresultsrequestedbyNFs[2].TheDCCFpreventsdataproviders,suchastheAccessandMobilityManagementFunction(AMF)andSessionManagementFunction(SMF)fromhandlingmultiplesubscriptionstothesamedataandsendingmultiplenotificationscontainingthesameinformationduetonocoordinationbetweendataconsumers.ExcepttheNWDAF,5GCNNFs,suchastheAMFandSMF,asmainnetworkelements(NEs)ofthecommunicationnetwork,mainlyprovidecommunicationservicesinsteadofdata.However,theNWDAFgenerallyneedstoobtainalargeamountofdataforbigdataanalysis.Repeatedreportingofalargeamountofidenticaldatadecreasestheperformanceof5GCNNFs.TheNWDAFcansubscribeorunsubscribedatafromtheDCCFthroughtheNdccfinterface.IftheDCCFhasnotpreviouslycollectedthedatarequestedbytheNWDAF,itcanusetheservice-basedinterface(SBI)tocollectthedatafromNFsorcollectdatathroughthemessagingframework.Subsequentlythedatacanbe

transmittedtotheNWDAFthrougheitherSBIormessagingframework.

FortheoptimizationandmanagementofRAN,thenetworkmanagementfunctioncansendanMDTorQoErequesttotheRANnode,whichtriggerstheRANnodetoconfigureMDTorQoEdatacollectiontotheUEs.TheMDTorQoEdatareportedbytheUEissenttothetracecollectionentity(TCE)ormeasurementcollectionentity(MCE)foranalysisthroughtheservicingRANnode.ThenetworkmanagementfunctionoptimizesconfigurationsofRANbasedonthe

self-organizingnetwork(SON).

TheLPPisusedtoexchangepositioningcontrolinformationandpositioningdatabetweentheUEandthenetwork.Generally,theamountofpositioningdataisnotlarge.Therefore,theLPPiscarriedontheCPprotocolstack.Inotherwords,thepositioningprotocolstackconsistsoftheLPP,non-accessstratum(NAS),RadioResourceControl(RRC),PacketDataConvergenceProtocol(PDCP),RadioLinkControl(RLC),MediumAccessControl(MAC),andPhysicalLayer(PHY).BasedonpositioningmeasurementdatatransmittedbytheLPP,theLMFestimates

thelocationinformationofUEsandprovidesitto5GNFsorAFs.

5/64

2.2.IMT-2030PromotionGroup

In6GNetworkArchitectureVision[8],IMT-2030PromotionGroupproposedthatthe6Gnetworkarchitecturerequiresakindofdatafunctionswhicharedifferentfromthetraditionaluserplane.Thedatafunctionssystematicallyaddressthechallengesofmanagingandmonetizingnon-traditionaluserplanedatainthe6Gnetwork.FromtheperspectiveofNFlayer,6Gdatafunctionsconsistofdataorchestrationandcontrol,dataprocessingandforwarding,anddatastorage.Basedonthecapabilityreportedbydataprocessingandforwardingnodesandrequirementsofdataservice,thedataorchestrationandcontrolnodeselectsthedatasourcenodes,processingandforwardingnodes.Basedonorchestration,theselectednodesformadatabearertoprovidedataservices.Thedataprocessingandforwardingnodeprovidesdataservicesasrequired,suchasdatacollection,datapreprocessing,datastorage,dataprivacyprotection,securityandtrustworthiness,dataanalysis,datasharing,anddataforwarding.Thestandardizationofdatalifecyclemanagementcanimprovedatacomparabilityandreusability,whichincludesprocessessuchasdataprivacy,securityandtrustworthiness,datacoordination,generation,andcollection,datastorage,datatransmission,dataprocessing,dataservice,anddataqualitymanagement,rightsand

interestsmanagement,etc.

In6GWirelessSystemDesignPrinciplesandTypicalFeatures[9],IMT-2030PromotionGroupproposedthatefficientdatagovernance,aunifieddatacollectionmethod,anddatalifecyclemanagementshouldbeconsideredatthebeginningof6Gsystemdesign.Nativedataisoneoftheprinciplesfor6Gwirelesssystemdesign.Thedesignofnativedatashouldensuredatasecurityandprivacy,improveefficiencyofdatacollection,transmission,andstorage.Thedesignofnativedatashouldalsoenhancedatasharingandreusability.Nativedatabuildsanopenandunifieddatalifecyclestandardtosupportallprocessesofubiquitousheterogeneousdatacirculation.Withcost-effective,efficient,andreliabledataservices,itenables6Gnetworksandassociatedindustriestoprocessandanalyzevarioustypesofdataaccuratelyandsystematically,so

astomakebetterdecisionsandprovidehigherqualityservices.

In6GDataServiceArchitectureResearch[10],IMT-2030PromotionGroupproposed6Gdataservicesandthedataplanearchitectureofthe6Gnetwork,anddescribedthefunctionoforchestrationandcontrol,processingfunctionsandsoon.In5G,therearematureprotocolstacksofCPandUPtosupportcommercialdeploymentandapplications.Theexistingprotocolstacksdecouplefunctionsbetweenplanes,andachievemodular,virtualized,andsoftware-basedfunctionmanagement.The6Gdataplanealsorequirescomplete,flexible,andscalableprotocolstackstosupportdataforwardingandcontrol,dataserviceexposure,dataagentmanagementandcontrol,

etc.

2.3.NextGAlliance

6/64

Inthe6GTechnologiesforWide-AreaCloudEvolution[11],theNextGAllianceproposedthatinadditiontocommunicationservices,computinganddataplaneswithdedicatedcomputinganddatamanagementfunctionsmaybeintroducedtocellularnetworks.The6GTechnologiesforWide-AreaCloudEvolution[11]drivesnetworkarchitecturedesignandintroducesnewfunctionsintermsof6Gnetworkcomputingservicestosupportdistributedcomputingandtightinterworkingbetweenthedistributedcloudand3GPPprotocols.Therefore,changesinthecontrol,management,anddataplanesneedtobestudiedtoadapttothedistributedcomputingprocess.Accordingtothereportcontent,thedataplaneissimilartotheuserplaneofexistingprotocols.It

ispossibletomeetcomputingservicerequirementsbyenhancingthedatabearer.

IntheAI-nativeWirelessNetworks[12],theNextGAllianceproposedthatcomparedwiththeapplicationsofAI/machinelearning(ML)in5G,AI/MLin6Gshouldhavethefollowingfeatures:Datacollectionwillbeatvariouslayerswithinthenetwork.Inadditiontonear-real-timemannerofAI/MLapplicationsof5G,AI/MLapplicationsfor6Gwilloperateinthereal-timemanner.AI/MLwillbeblendedintothedesignof6GandthetransceiversmaybedesignedtobeAI-nativeatthebeginningof6G.Therefore,itisnecessarythatAI/MLbeentrenchedinthedesignofradiolayerswithinterfacingtoAIanddata-collectionframeworks.Theseinteractionsneedastrongemphasisonsecurityandprivacy.ThisAInativemethodensuresrapidevolutionofwireless

technologies,whichmaybepartialindependentofstandardscycles.

2.4.Hexa-X

IntheDraftfoundationfor6Gsystemdesign[13],Hexa-XproposedthatthedatacollectionandAIframeworksarepervasivefunctionalitiesofthe6Gsystem.Thedatacollectionframeworksupportseveraldifferenttypesofdataandinformationtobecollectedfrommultipledomainsandlayersofthenetworkandmovedwithinthenetworkforanalysis.Datatransmissionandintegrationwilltakeplaceconsideringprivacyandownershipconcernsofallstakeholders.Couplingdataacrossapplicationsandnetworkswillprovidetheopportunitytoimprovethenetworkperformanceorenablenetworkawareapplications.Thedatacollectionframeworkcollectsthedatarequiredbythenetworkmanagementfunctionandsupportsreal-timecontroland

operationstoprocessrequireddata.

IntheFoundationofoverall6Gsystemdesignandpreliminaryevaluationresults[14],Hexa-XproposedthatAIneedsnovelarchitecturalelementsthatenableforprivacyawaredatacollectionandlearning.Data-drivennetworkcontrolunitsandUEaggregationunitsareintroducedtosupportdatasharingbetweenthenetworkandUEs,soastoimprovecontrolanddecisions.Basedondataprivacyrequirements,UE-orienteddatacollectionandlearningenableUEstotakeadvantageofnetworkinformationalongwithon-devicecontextualinformation(useractivity,intent,andusagepatterns)toassistthenetworkinconnectivitydecisions,i.e.,toimprove

theconnectivityQoE.

7/64

2.5.6GANA

Inthe6GDataService-ConceptandRequirement[15],6GANApointedoutthatthe6Gnetworkprovidesnewcapabilities,suchasnativeAI,nativesensing,andnativesecurityinthecontextofintegratedcommunication,sensing,andcomputing.Basedontheinformationtransmissioncapabilitiesoftraditionalmobilecommunicationnetworks,thenewcapabilitiesenhancethedataproductionandconsumptioncapabilitiesofthenetworkandmakethe6Gnetworkaplatformforinformationanddatacirculation.Efficientmanagementofdatacarriedonthe6Gnetworkisakeytechnologyofthe6Gnetwork.Therefore,basedonthetrusteddataserviceframeworkproposedintheWhitePaperon6GDataServiceConceptandRequirements[15],the6Gnetworkwillintroduceanindependentdataplane.The6Gdataplanebuildsarchitecture-levelunifiedandtrusteddataservicestoclarifythedatasource,description,

collection,processing,storage,application,andprivacyprotection.

3.6GDataServiceScenariosandRequirementAnalysis

6Gdataservicesindicatethatthe6Gsystemprovidesdataresourcestointernalfunctions,suchastheUE,RAN,andCN.Thecollecteddatacanbeusedbynetworkcapabilityexposurefunctions(suchastheNEForCAPIF)toprovidedatanetworkcapabilitiesoreventtoexternalfunctionsofthe6Gsystem,suchasAFs.Inaddition,thecollecteddatacanbeusedbythesensingfunctiontoprovidesensingservicestoAFsorNFs,orbeusedbytheAIfunctionstoprovide

assistanceinformationforthecontrolandoptimizationofnetworks.

Withdataasthecoreelement,6Gdataservicesaimtofullyutilizethevalueof6Gdata,soastobreakthroughtheboundariesofsingle-dimensionalmobileservicesandpromoteintegratedinnovationofservices.Thedataof6Gnetworksindicatethedatageneratedorobtainedbythe6Gsysteminsteadofthedatainthetraditionaluserplane.ItincludesthedatageneratedbytheUEs,RAN,CN,andnetworkmanagementfunctionsduringtheoperationsofcommunicationservices.Italsoincludessensingdata(e.g.,sensingmeasurements)andAIdata(e.g.,AImodel)generatedbyUEs,RAN,CNandnetworkmanagementfunctionsduringtheoperationsofnewservices(e.g.,sensingservices,AIservices).Theshareabledataobtainedbythe6Gnetworksfromthirdpartiesisalsoincluded,suchasvarioustypesofsensorinformation(includingtemperature,humidity,andenvironment)andgeographicinformationsystem(GIS)information.Thischapterdescribes

scenariosof6Gdataserviceandanalyzespotentialrequirements.

3.1.SensingData

3.1.1.Description

8/64

Sensingdatainthe6Gsystemisthedatadescribingthephysicalworldstatusobtainedthroughradiowavesorothersensorsduringphysicalworldexploration.Sensingdatamainly

includesnativesensingdata,externalsensingdata,andmulti-modalintegratedsensingdata.

>Nativesensingdata

The6Gmobilecommunicationsystemhasasensingfunction,thatis,nativesensing.Nativesensingdataisthedatageneratedduringnativesensingofthe6Gmobilecommunicationsystem.ItincludesnativesensingmeasurementdataobtainedbytheUEorRANnodebasedonairinterfacesignalmeasurement,andnativesensingresults.Generally,thenativesensingmeasurementdataincludestwotypes.Oneisthedataobtainedduringsensingmeasurementtoassistindatacommunication,suchasthedatameasuredforsensingthechannelenvironment.Theotheristhedatameasuredpurelyforsensingthetargetobjectorenvironment,suchasthesignalstrengthandarrivaltimemeasuredduringpositioning,andtheRFsignaldatameasuredduringranging,speedmeasurement,andimaging.Throughnativesensing,the6Gsystemobtainsthe

sensingresults,suchastheposition,speed,andimagingofthesensingtarget.

>Externalsensingdata

Externalsensingdataisthedatathatthe6Gsystemobtainsfromexternalthird-partyIoTsensorsorGIS,whichincludesintermediatemeasurementdataandsensingresults.Thedataisnotinvisibledatathatistransparentlytransmittedonthenetwork.Itneedstobeprocessedbythesensingmoduleofthe6Gsystemtogeneratesensingmeasurementintermediatedataorevenusablesensingresults.Forexample,the6Gsystemconnectstoautomaticrecognitionequipment,suchasbarcoderecognition,imagerecognition,andradiofrequencyidentification(RFID)toobtaintargetinformation,andconnectstovarioustypesofsensorstoobtainphysicalinformation,suchasbiomass,chemical,heat,pressure,temperature,sound,light,electricity,andvibrationinformation.Thesensorsmainlyincludemechanicalsensors(suchasthedisplacementsensorandlevelsensor),geometricsensors,forcesensors(suchasthepressuresensorandspeedsensor),thermalsensors(suchasthetemperaturesensor),opticalsensors(suchastheimagesensorandinfrared/ultravioletsensor),electromagneticsensors(suchastheelectricfieldsensorandvoltagesensor),acousticsensors(suchasthesoundsurfacewavesensorandultrasonicsensor),raysensors,humiditysensors,gassensors(suchasthegascompositionsensorandgasconcentration

sensor),ionsensors(suchasthePHsensors),physiologicalsensors,andbiochemicalsensors.

>Multi-modalintegratedsensingdata

Comparedwithnativeorexternalsensingdata,multi-modalintegratedsensingdatafocusesonintegratedprocessingofthesetwotypesofdata.Inthe6Gsystem,multi-modalsensingdataincludesnativeandexternalsensingdata,whichcanbeprocessedseparatelyorgeneratenew

sensingdataorsensingresultsthroughintegratedsensing.Multi-modalintegratedsensing

9/64

incorporatesnativesensingandexternalsensing.Itintegratesdatafrommultiplesensingchannelsforunderstandingandprocessing.Varioustypesofsensingdatacollaborate,complement,revise,andenhanceeachothertogeneratebettersensingresultsthansingletypesofsensingdata.Forexample,inanindoorenvironmentcoveredbythelandmobilecommunicationsystemandInternetofThings(IoT)terminals,cellularpositioningdatacanbeusedtogetherwithdataofexternalIoTsensingdevices,suchasWi-Fi,Bluetooth,Zigbee,andUWBpositioningdatato

generatemulti-modalintegratedsensingdata.

3.1.2.PotentialRequirements

Inthe6Gsystem,varioustypesofsensingareavailable,andthesensingdataisextensive.Thenewandoptimizedsensingfunctioncausesahugeamountofdatainthelandmobilecommunicationsystem.Inadditiontonativesensing,the6Gsystemneedstoprocessandtransmit

externalsensingdataandmulti-modalintegratedsensingdata.

Specifically,thefunctionalrequirementsonthe6Gsystemareasfollows:

1)Datacollection:Duringnativesensing,the6GsystemusessignalingtomeasureparameterstransmittedthroughradiowavesandRFchannelsandcollectssensingdatafromvarioustypesofIoTsensingdevicesoverdifferentinterfaces.

2)Dataprocessing:The6Gsystemprocessesthecollectedsensingdata.ThroughAImodeltraining,computing,andotherprocessingmethodsforsensingdataobtainedfromvarioussensingchannels,usablesensingresultsareobtained.Theusablesensingresultsassistindecisionmakingandexecutionofcommunicationorotherfunctionsinthe6Gsystem,orareusedasinputparameterstoassistsomeapplications.Duringmulti-modalintegratedsensing,datafrommultiplesensingchannelscanbecollaborativelyprocessedtoensurebettersensingperformance.

3)Datatransmission:Inthe6Gsystem,massivevolumeofsensingdataneedstobetransmitted.Theintermediatemeasurementdataneedstobetransmittedtonetworkorcomputingnodesforintegrationandcalculation,soastoobtainsensingdataorsensingresults.Forexample,duringcellularpositioning,measurementdata,includingthesignalstrengthandsignalarrivaltimebetweenaUEandmultipleRANnodesneedsto

betransmittedandintegratedtoobtainthelocationinformationoftheUE.

Theperformancerequirementsonthe6Gsystemareasfollows:

1)Duetomassivevolumeofsensingdatainthe6Gsystemanddifferentsensingdatarequirementsofvarioustypesofapplications,the6Gcommunicationsystemneedstohavegoodtransmissionperformance,includingthebandwidthandlatency.AccordingtoStudyonScenariosandRequirementsof5G-AdvancedIntegratedSensingandCommunication[16],thesensingdatarateisabout1kbpsto10Mbps.

2)Tocalculateandmakedecisionsonmassivevolumeofsensingdata,the6GsystemneedstohavestrongcomputingpowerandbetterperformanceforAImodelsand

10/64

variousalgorithms.

3)Sensingdatainvolvesalargeamountofuserprivacybecauseitcomesfromphysicalstatusinformationaboutpeople,device,andenvironmentrelatedtoToBorToCusers.The6Gsystemneedstomeetapplicationrequirementsandensureusersecurityandprivacywhenperformingsensing.

3.2.AIModelTrainingData

3.2.1.Description

Onthe5GCN,theNWDAFismainlyusedforprediction,suchasUElocationpredictionandNEloadpredictioninAIanalysisscenarios,suchasdataandmodeltrainingandmodelinference.Insuchscenarios,asmall-scaleneuralnetworkmodel,suchastherecurrentneuralnetwork(RNN),convolutionalneuralnetwork(CNN),orlongshort-termmemory(LSTM)isused.Generally,themodelcontainsthousandstohundredsofthousandsofparameters.TheMTLFneedstocollecttenstohundredsofmegabytesofmodeltrainingdatatotrainamodel.The6GnetworkhasmoreextensiveAIanalysisscenarios,suchasobjectrecognitionandtrajectoryplanningbasedonsensingdataandnetworkpolicycontrolbasedonnetworkdata.Drivenbydiversescenarios,the6Gnetworkrequireslarger-scaleandmorecomplexmodelsforinferenceandanalysis.Academicresearchresultsshowthattheamountofdatarequiredtotrainamodelisproportionaltothemodelsize.Totrainamodelwith100millionmodelparameters,atleast8GB

dataisrequiredforpre-training,andotherspecifi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论