版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省保定市唐县2024年中考数学模拟预测题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列大学的校徽图案是轴对称图形的是()A. B. C. D.2.小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:①小明家距学校4千米;②小明上学所用的时间为12分钟;③小明上坡的速度是0.5千米/分钟;④小明放学回家所用时间为15分钟.其中正确的个数是()A.1个 B.2个 C.3个 D.4个3.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米 B.(60+160) C.160米 D.360米4.如图所示的几何体的俯视图是(
)A. B. C. D.5.下列多边形中,内角和是一个三角形内角和的4倍的是()A.四边形B.五边形C.六边形D.八边形6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32° B.64° C.77° D.87°7.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球8.若,则括号内的数是A. B. C.2 D.89.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A.或 B.或C.或 D.或10.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=2二、填空题(共7小题,每小题3分,满分21分)11.如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l1分别通过A、B、C三点,且l1∥l2∥l1.若l1与l2的距离为5,l2与l1的距离为7,则Rt△ABC的面积为___________12.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.13.分解因式:3a2﹣12=___.14.某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:应聘者专业素质创新能力外语水平应变能力A73857885B81828075如果只招一名主持人,该选用______;依据是_____.(答案不唯一,理由支撑选项即可)15.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)16.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.17.如图,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=kx(k为常数,k≠0)的图像上,正方形ADEF的面积为4,且BF=2AF,则三、解答题(共7小题,满分69分)18.(10分)化简:.19.(5分)如图1,反比例函数(x>0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.20.(8分)填空并解答:某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客.已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达.该单位上午8:00上班,中午11:30下班.(1)问哪一位“新顾客”是第一个不需要排队的?分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4….窗口开始工作记为0时刻.a1a2a3a4a5a6c1c2c3c4…到达窗口时刻000000161116…服务开始时刻024681012141618…每人服务时长2222222222…服务结束时刻2468101214161820…根据上述表格,则第位,“新顾客”是第一个不需要排队的.(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失.分析:第n个“新顾客”到达窗口时刻为,第(n﹣1)个“新顾客”服务结束的时刻为.21.(10分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.(1)请聪明的你将下面图①、图②、图③的等边三角形分别割成2个、3个、4个全等三角形;(2)如图④,等边△ABC边长AB=4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且∠MON=120°,若四边形BMON的面积为s,它的周长记为l,求最小值;(3)如图⑤,等边△ABC的边长AB=4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且∠PDQ=120°,若PA=x,请用含x的代数式表示△BDQ的面积S△BDQ.22.(10分)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.23.(12分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?24.(14分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项正确;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、C【解析】
从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解.【详解】解:①小明家距学校4千米,正确;②小明上学所用的时间为12分钟,正确;③小明上坡的速度是千米/分钟,错误;④小明放学回家所用时间为3+2+10=15分钟,正确;故选:C.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.3、C【解析】
过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.【详解】如图所示,过点A作AD⊥BC于点D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×=m;在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×=m.∴BC=BD+DC=m.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.4、B【解析】
根据俯视图是从上往下看得到的图形解答即可.【详解】从上往下看得到的图形是:故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线5、C【解析】
利用多边形的内角和公式列方程求解即可【详解】设这个多边形的边数为n.由题意得:(n﹣2)×180°=4×180°.解得:n=1.答:这个多边形的边数为1.故选C.【点睛】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.6、C【解析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.考点:旋转的性质.7、A【解析】
根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.8、C【解析】
根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【详解】解:,
故选:C.【点睛】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.9、B【解析】
根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,∴使成立的取值范围是或,故选B.【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.10、A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.二、填空题(共7小题,每小题3分,满分21分)11、17【解析】过点B作EF⊥l2,交l1于E,交l1于F,如图,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=AB⋅BC=AB2=17.故答案是17.点睛:本题考查了全等三角形的判定和性质、勾股定理、平行线间的距离,三角形的面积公式,解题的关键是做辅助线,构造全等三角形,通过证明三角形全等对应边相等,再利用三角形的面积公式即可得解.12、2【解析】
连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.【详解】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=1,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值1.∴△BDM的周长的最小值为DB+AD=2+1=2.【点睛】本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.13、3(a+2)(a﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).14、AA的平均成绩高于B平均成绩【解析】
根据表格求出A,B的平均成绩,比较大小即可解题.【详解】解:A的平均数是80.25,B的平均数是79.5,∴A比B更优秀,∴如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.【点睛】本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.15、5【解析】
如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.【详解】如图,作BH⊥AC于H.
在Rt△ABH中,∵AB=10海里,∠BAH=30°,
∴∠ABH=60°,BH=AB=5(海里),
在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),
∴BH=CH=5海里,
∴CB=5(海里).
故答案为:5.【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.16、8【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】∵四边形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S阴影==8,故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.17、-1【解析】试题分析:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=1.设B点坐标为(t,1),则E点坐标(t-2,2),∵点B、E在反比例函数y=的图象上,∴k=1t=2(t-2),解得t=-1,k=-1.考点:反比例函数系数k的几何意义.三、解答题(共7小题,满分69分)18、【解析】
原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】解:原式.19、(1);(2),;(3)【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=x﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0<t<2),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t,t﹣1),则MN=﹣t+1,根据三角形面积公式得到S△CMN=•t•(﹣t+1),再进行配方得到S=﹣(t﹣)2+(0<t<2),最后根据二次函数的最值问题求解.试题解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=,得a=2,∴B点坐标为(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,﹣1)代入得,解得,∴直线AC的解析式为y=x﹣1;(3)设M点坐标为(t,)(0<t<2),∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△CMN=•t•(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴当t=时,S有最大值,最大值为.20、(1)5;(2)5n﹣4,na+6a.【解析】
(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,则第n个“新顾客”到达窗口时刻为5n﹣4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a.【详解】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;故答案为:5;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,∴第n个“新顾客”到达窗口时刻为5n﹣4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,∴第n个“新顾客”服务开始的时间为(6+n)a,∴第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,∵每a分钟办理一个客户,∴第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,故答案为:5n﹣4,na+6a.【点睛】本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式.21、(1)详见解析;(2)2+2;(3)S△BDQx+.【解析】
(1)根据要求利用全等三角形的判定和性质画出图形即可.(2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.证明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四边形BMON=S四边形BEOF=定值,证明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因为l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因为OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,由此即可解决问题.(3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.证明△PDF≌△QDE(ASA),即可解决问题.【详解】解:(1)如图1,作一边上的中线可分割成2个全等三角形,如图2,连接外心和各顶点的线段可分割成3个全等三角形,如图3,连接各边的中点可分割成4个全等三角形,(2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.∵△ABC是等边三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四边形BMON=S四边形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,此时定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等边三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=•BQ•DE=×(2+x)×=x+.【点睛】本题主要考查多边形的综合题,主要涉及的知识点:全等三角形的判定和性质、多边形内角和、角平分线的性质、等量代换、三角形的面积等,牢记并熟练运用这些知识点是解此类综合题的关键。22、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.【解析】
(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系(2)过点B作BE⊥BD,交MN于点E.AD交BC于O,证明,得到,,根据为等腰直角三角形,得到,再根据,即可解出答案.(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.在DA上截取一点H,使得CD=DH=1,则易证,由即可得出答案.【详解】解:(1)如图1中,由题意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案为.(2).证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省芜湖市(2024年-2025年小学五年级语文)统编版竞赛题(上学期)试卷及答案
- 2024年人力资源管理教案改革方向
- 《接触网施工》课件 6.1.2 人工进行目测
- 2024故宫课件研讨会:学术研究及教学实践
- 2024年绘本比较:《逃家小兔》与经典童话
- 2023年“中国银行杯”枣庄市“鲁班传人”职业技能大赛-枣庄市高端装备职业技能大赛电工赛项
- 2024年《认识钟表》教案:虚拟现实与实体钟表结合
- 2024年母亲节特色课件:《感恩母亲》的创意应用
- 培养逻辑思维:2024年特色5以内加减法教学
- 陕西省汉中市2024-2025学年高一上学期11月期中校际联考试题 英语 含答案
- 二年级数学看错数字问题专项练习
- 七十岁老人换驾照考三力测试题库
- 2024《整治形式主义为基层减负若干规定》全文课件
- 医院感染预防与控制标准规范知识考试题库500题(含答案)
- 中国法律史-第三次平时作业-国开-参考资料
- 大体积混凝土养护方案
- 1803综采工作面供电设计
- 胎心听诊技术PPT参考课件
- 《三只小猪》剧本
- 药厂生产过程中的危险有害因素分析及安全对策
- 从轨道电路的运用看区间信号的发展
评论
0/150
提交评论