版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
April2024
Mcsey
&company
AIbyMckinsey
QuantumBlack
McKinseyExplainers
WhatisAI(artificialintelligence)?
Artificialintelligenceisamachine’sabilitytoperformsomecognitivefunctionsweusuallyassociatewithhumanminds.
Humansandmachines:amatchmadein
productivity
heaven.Ourspecieswouldn’thave
gottenveryfarwithoutourmechanizedworkhorses.Fromthewheelthatrevolutionizedagricultureto
thescrewthatheldtogetherincreasinglycomplexconstructionprojectstotherobot-enabled
assemblylinesoftoday,machineshavemadelifeasweknowitpossible.Andyet,despitetheir
seeminglyendlessutility,humanshavelongfearedmachines—morespecifically,thepossibilitythat
machinesmightsomeday
acquirehumanintelligence
andstrikeoutontheirown.
Butwetendtoviewthepossibilityofsentient
machineswithfascinationaswellasfear.This
curiosityhashelpedturnsciencefictionintoactualscience.Twentieth-centurytheoreticians,like
computerscientistandmathematicianAlanTuring,envisionedafuturewheremachinescould
performfunctionsfasterthanhumans.Thework
ofTuringandotherssoonmadethisareality.
Personalcalculatorsbecamewidelyavailableinthe1970s,andby2016,theUScensusshowedthat
89percentofAmericanhouseholds
hadacomputer.Machines—smartmachinesatthat—arenowjust
anordinarypartofourlivesandculture.
Thosesmartmachinesarealsogettingfasterandmorecomplex.Somecomputershavenowcrossedthe
exascale
threshold,meaningtheycanperformasmanycalculationsinasinglesecondasan
individualcouldin
31,688,765,000years
.Andbeyondcomputation,whichmachineshavelongbeenfasteratthanwehave,computersandotherdevicesare
nowacquiringskillsandperceptionthatwereonceuniquetohumansandafewotherspecies.
AIisamachine’sabilitytoperformthecognitive
functionsweassociatewithhumanminds,suchasperceiving,reasoning,learning,interactingwiththeenvironment,problem-solving,andevenexercisingcreativity.You’veprobablyinteractedwithAIevenifyoudon’trealizeit—voiceassistantslikeSiriand
AlexaarefoundedonAItechnology,asaresomecustomerservicechatbotsthatpopuptohelp
younavigatewebsites.
AppliedAI
—simply,artificialintelligenceappliedtoreal-worldproblems—hasseriousimplicationsfor
thebusinessworld.Byusingartificialintelligence,
companieshavethepotentialtomakebusiness
moreefficientandprofitable.Butultimately,the
valueofAIisn’tinthesystemsthemselves.Rather,it’sinhowcompaniesusethesesystemstoassist
humans—andtheirabilityto
explain
toshareholdersandthepublicwhatthesesystemsdo—inaway
thatbuildstrustandconfidence.
FormoreaboutAI,itshistory,itsfuture,andhowtoapplyitinbusiness,readon.
Learnmoreabout
QuantumBlack,AIbyMcKinsey.
Beyondcomputation,computersand
otherdevicesarenowacquiringskills
andperceptionthatwereonceuniquetohumansandafewotherspecies.
WhatisAI(artificialintelligence)?2
Whatismachinelearning?
Machinelearningisaformofartificialintelligence
thatcanadapttoawiderangeofinputs,including
largesetsofhistoricaldata,synthesizeddata,or
humaninputs.(Somemachinelearningalgorithmsarespecializedintrainingthemselvestodetect
patterns;thisiscalleddeeplearning.SeeExhibit1.)Thesealgorithmscandetectpatternsandlearn
howtomakepredictionsandrecommendationsbyprocessingdata,ratherthanbyreceivingexplicit
programminginstruction.Somealgorithmscanalsoadaptinresponsetonewdataandexperiences
toimproveovertime.
Thevolumeandcomplexityofdatathatisnowbeing
generated,toovastforhumanstoprocessand
applyefficiently,hasincreasedthepotentialof
machinelearning,aswellastheneedforit.Intheyearssinceitswidespreaddeployment,which
beganinthe1970s,machinelearninghashadanimpactonanumberofindustries,including
achievementsin
medical-imaginganalysis
andhigh-resolutionweatherforecasting.
Whatisdeeplearning?
Deeplearningisamoreadvancedversionofmachinelearningthatisparticularlyadept
atprocessingawiderrangeofdataresources(textaswellasunstructureddataincludingimages),
requiresevenlesshumanintervention,andcanoftenproducemoreaccurateresultsthan
traditionalmachinelearning.Deeplearninguses
neuralnetworks—basedonthe
waysneurons
interactinthehumanbrain
—toingestdataand
processitthroughmultipleneuronlayersthat
recognizeincreasinglycomplexfeaturesofthedata.Forexample,anearlylayermightrecognize
somethingasbeinginaspecificshape;buildingonthisknowledge,alaterlayermightbeableto
identifytheshapeasastopsign.Similartomachinelearning,deeplearningusesiterationtoself-correctandimproveitspredictioncapabilities.Forexample,onceit“learns”whatastopsignlookslike,itcan
recognizeastopsigninanewimage.
Learnmoreabout
QuantumBlack,AIbyMcKinsey.
Exhibit1
Artiicialintelligenceisamachine’sabilitytoperformsomecognitivefunctionsweusuallyassociatewithhumanminds.
Theevolutionofartiicialintelligence
Artiicialintelligence
Thescienceand
engineeringof
makingintelligent
machines
AIisthebroadieldofdevelopingmachinesthatcanreplicate
humanbehavior,
includingtasksrelatedtoperceiving,
reasoning,learning,andproblem-solving.
Machinelearning
Amajor
breakthrough
inachievingAI
Machinelearning
algorithmsdetect
patternsinlarge
datasetsandlearntomakepredictionsbyprocessingdata,ratherthanby
receivingexplicit
programming
instructions.
Deeplearning
Anadvanced
branchofmachine
learning
Deeplearningusesneuralnetworks,inspiredbythe
waysneuronsinteractinthehumanbrain,toingestdataandprocessitthrough
multipleiterationsthatlearnincreasinglycomplex
featuresofthedataand
makeincreasingly
sophisticatedpredictions.
GenerativeAI
Anadvancedbranch
ofdeeplearning
GenerativeAIisabranchofdeeplearningthatuses
exceptionallylargeneural
networkscalledlarge
languagemodels(with
hundredsofbillionsofneurons)
thatcanlearnespecially
abstractpatterns.Language
modelsappliedtointerpretandcreatetext,video,images,and
dataareknownasgenerativeAI.
McKinsey&Company
WhatisAI(artificialintelligence)?3
Thevolumeandcomplexityofdatathatisnowbeinggenerated,toovastfor
humanstoprocessandapplyefficiently,hasincreasedthepotentialofmachinelearning,aswellastheneedforit.
WhatisgenerativeAI?
GenerativeAI
(genAI)isanAImodelthatgeneratescontentinresponsetoaprompt.It’sclearthat
generativeAItoolslikeChatGPTandDALL-E(atoolforAI-generatedart)havethepotentialtochange
how
arangeofjobs
areperformed.Muchisstill
unknownaboutgenAI’spotential,butthereare
somequestionswecananswer—likehowgenAI
modelsarebuilt,whatkindsofproblemstheyare
bestsuitedtosolve,andhowtheyfitintothebroadercategoryofAIandmachinelearning.
FormoreongenerativeAIandhowitstandsto
affectbusinessandsociety,checkoutourExplainer“
WhatisgenerativeAI?
”
WhatisthehistoryofAI?
Theterm“artificialintelligence”was
coinedin1956
bycomputerscientistJohnMcCarthyforaworkshopatDartmouth.Buthewasn’tthefirsttowriteabout
theconceptswenowdescribeasAI.AlanTuring
introducedtheconceptofthe“
imitationgame
”ina1950paper.That’sthetestofamachine’sability
toexhibitintelligentbehavior,nowknownasthe
“Turingtest.”Hebelievedresearchersshouldfocusonareasthatdon’trequiretoomuchsensingandaction,thingslikegamesandlanguagetranslation.Researchcommunitiesdedicatedtoconcepts
likecomputervision,naturallanguageunderstanding,andneuralnetworksare,inmanycases,several
decadesold.
MITphysicistRodneyBrooks
shared
detailsonthefourpreviousstagesofAI:
—SymbolicAI(1956).SymbolicAIisalsoknownasclassicalAI,orevenGOFAI(goodold-fashionedAI).Thekeyconcepthereistheuseofsymbolsandlogicalreasoningtosolveproblems.For
example,weknow
aGermanshepherdisadog
,whichisamammal;allmammalsarewarm-
blooded;therefore,aGermanshepherdshouldbewarm-blooded.
ThemainproblemwithsymbolicAIisthathumansstillneedtomanuallyencodetheirknowledge
oftheworldintothesymbolicAIsystem,ratherthanallowingittoobserveandencode
relationshipsonitsown.Asaresult,symbolicAIsystemsstrugglewithsituationsinvolving
real-worldcomplexity.Theyalsolacktheabilitytolearnfromlargeamountsofdata.
SymbolicAIwasthedominantparadigmofAIresearchuntilthelate1980s.
—Neuralnetworks(1954,1969,1986,2012).
Neuralnetworksarethetechnologybehind
therecentexplosivegrowthofgenAI.Looselymodelingthe
waysneuronsinteractinthe
humanbrain
,neuralnetworksingestdataandprocessitthroughmultipleiterationsthatlearnincreasinglycomplexfeaturesofthedata.Theneuralnetworkcanthenmakedeterminations
WhatisAI(artificialintelligence)?4
aboutthedata,learnwhetheradeterminationiscorrect,andusewhatithaslearnedtomake
determinationsaboutnewdata.Forexample,onceit“learns”whatanobjectlookslike,itcanrecognizetheobjectinanewimage.
Neuralnetworkswerefirstproposedin1943
inanacademicpaperbyneurophysiologist
WarrenMcCullochandlogicianWalterPitts.
Decadeslater,in1969,twoMITresearchers
mathematicallydemonstratedthatneural
networkscouldperformonlyverybasictasks.In1986,therewasanotherreversal,when
computerscientistandcognitivepsychologistGeoffreyHintonandcolleaguessolvedthe
neuralnetworkproblempresentedbytheMITresearchers.Inthe1990s,computerscientistYannLeCunmademajoradvancementsin
neuralnetworks’useincomputervision,whileJürgenSchmidhuberadvancedtheapplication
ofrecurrentneuralnetworksasusedinlanguageprocessing.
In2012,Hintonandtwoofhisstudents
highlightedthepowerofdeeplearning.They
appliedHinton’salgorithmtoneuralnetworks
withmanymorelayersthanwastypical,
sparkinganewfocusondeepneuralnetworks.
ThesehavebeenthemainAIapproachesof
recentyears.
—Traditionalrobotics(1968).Duringthefirstfew
decadesofAI,researchersbuiltrobotstoadvance
research.Somerobotsweremobile,moving
aroundonwheels,whileotherswerefixed,with
articulatedarms.Robotsusedtheearliest
attemptsatcomputervisiontoidentifyand
navigatethroughtheirenvironmentsorto
understandthegeometryofobjectsand
maneuverthem.Thiscouldincludemoving
aroundblocksofvariousshapesandcolors.
Mostoftheserobots,justliketheonesthathave
beenusedinfactoriesfordecades,relyon
highlycontrolledenvironmentswiththoroughly
scriptedbehaviorsthattheyperformrepeatedly.
Casestudy:VistraandtheMartinLakePowerPlant
Vistraisalargepowerproducerinthe
UnitedStates,operatingplantsin12stateswithacapacitytopowernearly20millionhomes.Vistrahascommittedtoachievingnet-zeroemissionsby2050.Insupport
ofthisgoal,aswellastoimproveoverall
efficiency,
QuantumBlack,AIbyMcKinsey
workedwithVistratobuildanddeploy
anAI-poweredheatrateoptimizer(HRO)atoneofitsplants.
“Heatrate”isameasureofthethermal
efficiencyoftheplant;inotherwords,it’s
theamountoffuelrequiredtoproduce
eachunitofelectricity.Toreachtheoptimalheatrate,plantoperatorscontinuously
monitorandtunehundredsofvariables,suchassteamtemperatures,pressures,oxygenlevels,andfanspeeds.
VistraandaMcKinseyteam,includingdatascientistsandmachinelearningengineers,builtamultilayeredneuralnetworkmodel.Themodelcombedthroughtwoyears’
worthofdataattheplantandlearned
whichcombinationoffactorswouldattain
themostefficientheatrateatanypoint
intime.Whenthemodelswereaccurateto
99percentorhigherandrunthrougha
rigoroussetofreal-worldtests,theteam
convertedthemintoanAI-poweredenginethatgeneratesrecommendationsevery
30minutesforoperatorstoimprovethe
plant’sheatrateefficiency.Oneseasonedoperationsmanageratthecompany’s
plantinOdessa,Texas,said,“Thereare
thingsthattookme20yearstolearnaboutthesepowerplants.Thismodellearnedtheminanafternoon.”
Overall,theAI-poweredHROhelpedVistraachievethefollowing:
—approximately1.6millionmetrictonsofcarbonabatedannually
—67powergeneratorsoptimized
—$60millionsavedinaboutayear
ReadmoreabouttheVistrastory
here
.
WhatisAI(artificialintelligence)?5
TheyhavenotcontributedsignificantlytotheadvancementofAIitself.
Buttraditionalroboticsdidhavesignificant
impactinonearea,throughaprocesscalled
“simultaneouslocalizationandmapping”(SLAM).SLAMalgorithmshelpedcontributetoself-
drivingcarsandareusedinconsumerproductslikevacuumcleaningrobotsandquadcopter
drones.Today,thisworkhasevolvedinto
behavior-basedrobotics,alsoreferredtoashaptictechnologybecauseitrespondsto
humantouch.
—Behavior-basedrobotics(1985).Inthereal
world,therearen’talwaysclearinstructionsfornavigation,decisionmaking,orproblem-solving.Insects,researchersobserved,navigatevery
well(andareevolutionarilyverysuccessful)withfewneurons.Behavior-basedrobotics
researcherstookinspirationfromthis,lookingforwaysrobotscouldsolveproblemswith
partialknowledgeandconflictinginstructions.Thesebehavior-basedrobotsareembedded
withneuralnetworks.
Learnmoreabout
QuantumBlack,AIbyMcKinsey.
Whatisartificialgeneralintelligence?
Theterm“artificialgeneralintelligence”(AGI)wascoinedtodescribeAIsystemsthatpossess
capabilitiescomparabletothoseofahuman
.Intheory,AGIcouldsomedayreplicatehuman-like
cognitiveabilitiesincludingreasoning,problem-solving,perception,learning,andlanguage
comprehension.Butlet’snotgetaheadofourselves:thekeywordhereis“someday.”Mostresearchers
andacademicsbelievewearedecadesawayfromrealizingAGI;someevenpredictwewon’tsee
AGIthiscentury,orever.RodneyBrooks,anMIT
roboticistandcofounderofiRobot,doesn’tbelieveAGIwillarriveuntil
theyear2300
.
ThetimingofAGI’semergencemaybeuncertain.Butwhenitdoesemerge—anditlikelywill—
it’sgoingtobeaverybigdeal,ineveryaspectof
ourlives.Executivesshouldbeginworkingto
understandthepathtomachinesachievinghuman-levelintelligencenowandmakingthetransitiontoamoreautomatedworld.
FormoreonAGI,includingthefourpreviousattemptsatAGI,readour
Explainer.
WhatisnarrowAI?
NarrowAIistheapplicationofAItechniquestoa
specificandwell-definedproblem,suchaschatbotslikeChatGPT,algorithmsthatspotfraudincredit
cardtransactions,andnatural-language-processingenginesthatquicklyprocessthousandsoflegal
documents.MostcurrentAIapplicationsfallinto
thecategoryofnarrowAI.AGIis,bycontrast,AIthat’sintelligentenoughtoperformabroadrangeoftasks.
Learnmoreabout
QuantumBlack,AIbyMcKinsey.
HowistheuseofAIexpanding?
AIisabigstoryforallkindsofbusinesses,butsomecompaniesareclearlymoving
aheadofthepack
.
OurstateofAIin2022surveyshowedthatadoptionofAImodelshasmorethandoubledsince2017—
andinvestmenthasincreasedapace.What’smore,thespecificareasinwhichcompaniesseevalue
fromAIhaveevolved,frommanufacturingandrisktothefollowing:
—marketingandsales
—productandservicedevelopment
—strategyandcorporatefinance
Onegroupofcompaniesispullingaheadofits
competitors.Leadersoftheseorganizations
consistentlymakelargerinvestmentsinAI,leveluptheirpracticestoscalefaster,andhireandupskill
thebestAItalent.Morespecifically,theylinkAI
strategytobusinessoutcomesand“
industrialize
”AIoperationsbydesigningmodulardataarchitecturethatcanquicklyaccommodatenewapplications.
WhatisAI(artificialintelligence)?6
WhatarethelimitationsofAI
models?Howcanthesepotentiallybeovercome?
WehaveyettoseethelongtaileffectofgenAI
models.Thismeanstherearesomeinherentrisksinvolvedinusingthem—bothknownandunknown.
TheoutputsgenAImodelsproducemayoften
soundextremelyconvincing.Thisisbydesign.Butsometimestheinformationtheygenerateisjust
plainwrong.Worse,sometimesit’sbiased(becauseit’sbuiltonthegender,racial,andotherbiasesof
theinternetandsocietymoregenerally).
Itcanalsobemanipulatedtoenableunethicalor
criminalactivity.SincegenAImodelsburstontothescene,organizationshavebecomeawareofuserstryingto“jailbreak”themodels—thatmeanstryingtogetthemtobreaktheirownrulesanddeliver
biased,harmful,misleading,orevenillegalcontent.
GenAIorganizationsarerespondingtothisthreatintwoways:foronething,they’recollecting
feedbackfromusersoninappropriatecontent.They’realsocombingthroughtheirdatabases,
identifyingpromptsthatledtoinappropriatecontent,
andtrainingthemodelagainstthesetypesofgenerations.
Butawarenessandevenactiondon’tguaranteethatharmfulcontentwon’tslipthedragnet.
OrganizationsthatrelyongenAImodelsshouldbeawareofthereputationalandlegalrisks
involvedinunintentionallypublishingbiased,offensive,orcopyrightedcontent.
Theseriskscanbemitigated,however,inafewways.“Wheneveryouuseamodel,”saysMcKinseypartnerMarieElHoyek,“youneedtobeableto
counter
biases
andinstructitnottouseinappropriateor
flawedsources,orthingsyoudon’ttrust.”How?Foronething,it’scrucialtocarefullyselecttheinitial
datausedtotrainthesemodelstoavoidincluding
toxicorbiasedcontent.Next,ratherthanemployinganoff-the-shelfgenAImodel,organizations
couldconsiderusingsmaller,specializedmodels.
Organizationswithmoreresourcescouldalso
customizeageneralmodelbasedontheirowndatatofittheirneedsandminimizebiases.
It’salsoimportanttokeepahumanintheloop(thatis,tomakesurearealhumancheckstheoutput
ofagenAImodelbeforeitispublishedorused)andavoidusinggenAImodelsforcriticaldecisions,
suchasthoseinvolvingsignificantresourcesorhumanwelfare.
Itcan’tbeemphasizedenoughthatthisisanewfield.Thelandscapeofrisksandopportunitiesislikely
tocontinuetochangerapidlyinthecomingyears.AsgenAIbecomesincreasinglyincorporated
intobusiness,society,andourpersonallives,wecanalsoexpectanewregulatoryclimatetotake
shape.Asorganizationsexperiment—andcreatevalue—withthesetools,leaderswilldowelltokeepafingeronthepulseofregulationandrisk.
Learnmoreabout
QuantumBlack,AIbyMcKinsey.
WhatistheAIBillofRights?
TheBlueprintforanAIBillofRights,preparedby
theUSgovernmentin2022,providesaframeworkforhowgovernment,technologycompanies,and
citizenscancollectivelyensuremoreaccountable
AI.AsAIhasbecomemoreubiquitous,
concerns
havesurfaced
aboutapotentiallackoftransparencysurroundingthefunctioningofgenAIsystems,thedatausedtotrainthem,issuesofbiasandfairness,potentialintellectualpropertyinfringements,
privacyviolations,andmore.TheBlueprintcomprisesfiveprinciplesthat
theWhiteHousesays
should
“guidethedesign,use,anddeploymentofautomatedsystemstoprotect[users]intheageofartificial
intelligence.”Theyareasfollows:
—Therighttosafeandeffectivesystems.Systemsshouldundergopredeploymenttesting,risk
identificationandmitigation,andongoing
monitoringtodemonstratethattheyareadheringtotheirintendeduse.
—Protectionsagainstdiscriminationbyalgorithms.Algorithmicdiscriminationiswhenautomated
systemscontributetounjustifieddifferent
treatmentofpeoplebasedontheirrace,color,ethnicity,sex,religion,age,andmore.
WhatisAI(artificialintelligence)?7
—Protectionsagainstabusivedatapractices,viabuilt-insafeguards.Usersshouldalsohave
agencyoverhowtheirdataisused.
—Therighttoknowthatanautomatedsystemisbeingused,andaclearexplanationofhow
andwhyitcontributestooutcomesthataffecttheuser.
—Therighttooptout,andaccesstoahumanwhocanquicklyconsiderandfixproblems.
Atpresent,morethan60countriesorblocshave
nationalstrategiesgoverningtheresponsible
useofAI(Exhibit2).TheseincludeBrazil,China,theEuropeanUnion,Singapore,SouthKorea,and
theUnitedStates.Theapproachestakenvaryfromguidelines-basedapproaches,suchasthe
BlueprintforanAIBillofRightsintheUnitedStates,
tocomprehensiveAIregulationsthatalignwith
existingdataprotectionandcybersecurity
regulations,suchastheEU’sAIAct,duein2024.
Therearealsocollaborativeeffortsbetween
countriestosetoutstandardsforAIuse.TheUS–EUTradeandTechnologyCouncilisworking
towardgreateralignmentbetweenEuropeandtheUnitedStates.TheGlobalPartnershiponArtificialIntelligence,formedin2020,has29members
includingBrazil,Canada,Japan,theUnitedStates,andseveralEuropeancountries.
EventhoughAIregulationsarestillbeingdeveloped,organizationsshouldactnowtoavoidlegal,
reputational,organizational,andfinancialrisks.Inanenvironmentofpublicconcern,amisstep
couldbecostly.Herearefourno-regrets,preemptiveactionsorganizationscanimplementtoday:
—Transparency.Createaninventoryofmodels,classifyingtheminaccordancewith
regulation,andrecordallusageacrosstheorganizationthatiscleartothoseinside
andoutsidetheorganization.
—Governance.ImplementagovernancestructureforAIandgenAIthatensuressufficient
oversight,authority,andaccountabilityboth
withintheorganizationandwiththird
partiesandregulators.
—Data,model,andtechnologymanagement.
•Datamanagement.Properdata
managementincludesawarenessofdatasources,dataclassification,data
qualityandlineage,intellectualproperty,andprivacymanagement.
•Modelmanagement.OrganizationsshouldestablishprinciplesandguardrailsforAI
developmentandusethemtoensureallAImodelsupholdfairnessandbiascontrols.
Exhibit2
RegulationsrelatedtoAIgovernancevaryaroundtheworld.
AsofNovember2023,nonexhaustive
Typeofpolicy:
Nonbindingprinciples(eg,OECD)
Japan
Singapore
UnitedArabEmirates
UnitedKingdom
.UnitedStates
Source:OECD;McKinseyanalysis
GeneralAIlegislationproposedorbeinginalized
●Brazil
Canada
China
SouthKorea
EuropeanUnion
Examplecountrieswithoutgeneral
AIlegislation
Australia
India
.NewZealand
SaudiArabia
McKinsey&Company
WhatisAI(artificialintelligence)?8
•Cybersecurityandtechnologymanagement.Establishstrongcybersecurityand
technologytoensureasecureenvironmentwhereunauthorizedaccessormisuse
isprevented.
—Individualrights.MakeusersawarewhentheyareinteractingwithanAIsystem,andprovideclearinstructionsforuse.
Howcanorganizationsscaleup
theirAIeffortsfromadhocprojectstofullintegration?
MostorganizationsaredippingatoeintotheAI
pool—notcannonballing.Slowprogresstowardwidespreadadoptionislikelyduetocultural
andorganizationalbarriers.Butleaderswho
effectivelybreakdownthesebarrierswillbebestplacedtocapturetheopportunitiesoftheAIera.
And—crucially—companiesthatcan’ttakefull
advantageofAIarealreadybeing
sidelined
bythosethatcan,inindustrieslikeautomanufacturing
andfinancialservices.
ToscaleupAI,organizationscanmake
three
majorshifts
:
1.Movefromsiloedworktointerdisciplinary
collaboration.AIprojectsshouldn’tbelimitedtodiscretepocketsoforganizations.Rather,
AIhasthebiggestimpactwhenit’semployedbycross-functionalteamswithamixofskills
andperspectives,enablingAItoaddressbroadbusinesspriorities.
2.Empowerfrontlinedata-based
decisionmaking
.AIhasthepotentialtoenablefaster,better
decisionsatalllevelsofanorganization.Butforthistowork,peopleatalllevelsneedtotrustthealgorithms’suggestionsandfeelempoweredto
makedecisions.(Equally,peopleshouldbeabletooverridethealgorithmormakesuggestionsforimprovementwhennecessary.)
3.Adoptandbolsteran
agile
mindset.Theagiletest-and-learnmindsetwillhelpreframe
mistakesassourcesofdiscovery,allayingthefearoffailureandspeedingupdevelopment.
Learnmoreabout
QuantumBlack,AIbyMcKinsey,
andcheckout
AI-relatedjobopportunities
ifyou’reinterestedinworkingatMcKinsey.
Articlesreferenced:
—
“AsgenAIadvances,regulators—andrisk
functions—rushtokeeppace
,”December21,2023,AndreasKremer,
AngelaLuget
,
Daniel
Mikkelsen
,
HenningSoller
,MalinStrandell-Jansson,andSheilaZingg
—“
WhatisgenerativeAI?
,”January19,2023
—“
Techhighlightsfrom2022—ineightcharts
,”December22,2022
—“
GenerativeAIishere:HowtoolslikeChatGPT
couldchangeyourbusiness
,”December20,2022,
MichaelChui
,
RogerRoberts
,and
LareinaYee
—“
ThestateofAIin2022—andahalfdecadein
review
,”Decembe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度设备维修合同标的及维修范围
- 专题20 动名词(五年真题+八省模拟+写作升格)【含答案解析】
- 专题13 介词用法(五年真题+八省模拟+写作升格)【含答案解析】
- 2024年度供应链管理外包服务合同3篇
- 二零二四年度房地产买卖合同:住宅小区购房与付款方式
- 烟道排烟合同范本
- 二零二四年度企业合并财务顾问补充合同
- 社会借款协议三篇
- 数据消除合同范本
- 青海期房合同范本
- 《11~20各数的认识》(教案)-2024-2025学年一年级上册数学人教版
- 2024-2025学年人教版小学五年级上学期期中英语试卷及解答参考
- 关于高技能人才培养问题的思考高技能人才培养方案
- 2024新信息科技四年级《第三单元 有趣的编码应用》大单元整体教学设计
- 正向管理课件教学课件
- 2024年8-9月高三名校模考语用题选(三)含答案
- 2024年超轻型飞机项目合作计划书
- 第三单元巩固练习-2024-2025学年统编版语文一年级上册
- 物流包装工作流程
- 银河麒麟高级服务器操作系统服务管理智慧树知到答案2024年黑龙江职业学院
- 上海市建设工程监理施工安全监督规程(DGTJ-08-2035-2024)
评论
0/150
提交评论