版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
隆中小山下_新浪博客:/5942jiaoyu25- 2009年中考数学试题解析(湖北襄阳卷)一、选择题(共12小题,每小题3分,满分36分)1.A为数轴上表示﹣1的点,将A点沿数轴向左移动2个单位长度到B点,则B点所表示的数为()A.﹣3B.3C.1D.1或﹣3考点:数轴.分析:此题借助数轴用数形结合的方法求解.解答:解:由题意得,把点向左移动2个单位长度,即是﹣1﹣2=﹣3.故B点所表示的数为﹣3.故选A.点评:在数轴上移动的时候,数的大小变化规律是:左减右加.2.如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.考点:简单组合体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:上面看,是上面2个正方形,左下角1个正方形,故选C.点评:本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误地选其它选项.3.通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为()A.3.1×10﹣5B.3.1×10﹣6C.3.1×10﹣7D.3.1×10﹣8考点:科学记数法—表示较小的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:0.0000031=3.1×10﹣6.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,已知直线AB∥CD,∠DCF=110°且AE=AF,则∠A等于()A.30°B.40°C.50°D.70°考点:三角形内角和定理;平行线的性质;等腰三角形的性质.专题:计算题.分析:根据两直线平行,同旁内角互补得出∠BFC,根据AE=AF可得出∠E=∠EFA,根据三角形的内角和为180°可求∠A.解答:解:∵AB∥CD,∴∠DCF+∠BFC=180°,∴∠BFC=70°,∴∠EFA=70°,又∵△AEF中,AE=AF,∴∠E=∠EFA=70°,∴∠A=180°﹣∠BFC﹣∠EFA=40°.故选B.点评:该题考查了平行线的性质及三角形内角和定理.5.下列运算正确的是()A.a2•a3=a6B.a8÷a4=a2C.a3+a3=2a6D.(a3)2=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:分别根据合并同类项、同底数幂的乘法和除法、幂的乘方法则进行计算即可.解答:解:A、a2•a3=a5≠a6,故本选项错误;B、a8÷a4=a4≠a2,故本选项错误;C、a3+a3=2a3≠2a6,故本选项错误;D、(a3)2=a3×2=a6,正确.故选D.点评:本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算法则是解题的关键,合并同类项时,只把系数相加减,字母与字母的次数不变.6.(3分)(2009•襄阳)函数y=的自变量x的取值范围是()A.x>0B.x≥﹣2C.x>﹣2D.x≠﹣2考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可求解.解答:解:根据题意得:x+2>0,解得,x>﹣2故选C.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.(3分)分式方程的解为()A.1B.﹣1C.﹣2D.﹣3考点:解分式方程.专题:计算题.分析:本题考查解分式方程的能力,观察可得最简公分母为(x﹣3)(x﹣1),去分母,解整式方程,结果需要检验.解答:解:方程两边同乘(x﹣3)(x﹣1),得x(x﹣1)=(x﹣3)(x+1),整理得x2﹣x=x2﹣2x﹣3,解得x=﹣3.经检验x=﹣3是方程的解.故选D.点评:解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.8.(3分)(2009•襄阳)如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度得到△A′B′C′,则与点B′关于x轴对称的点的坐标是()A.(0,﹣1)B.(1,1)C.(2,﹣1)D.(1,﹣2)考点:一次函数综合题.专题:动点型.分析:此题要分两种情况,(1)P点在AB上,D点在BC上,设出运动时间t,把BP,AP用t表示出来,根据条件过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍,求出t值;(2)同理:假设P点在AC上,D点在BC上,解出t值.解答:解:(1)当P把△ABC分成如图1两部分时,因为AB=AC=12cm,BD=CD=BC=×6=3cm,所以P在AB上,设P运动了t秒,则BP=t,AP=12﹣t,由题意得:当BP+BD=(AP+AC+CD)时,即t+3=(12﹣t+12+3),解得t=7秒;(2)当DP把△ABC分成如图2两部分时,因为AB=AC=12cm,BD=CD=BC=×6=3cm,所以P在AC上,设P运动了t秒,则AB+AP=t,PC=AB+AC﹣t,由题意得:当BD+t=2(PC+CD)时,即3+t=2(12+12﹣t+3),即3t=51,t=17秒.∴当t=7或17秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.点评:此题很简单,考查的是一次函数在实际生活中的应用,再解答此题时一定要注意分两种情况讨论,不要漏解.17.(3分)(2010•衡阳)如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为π﹣4(结果保留π).考点:扇形面积的计算.分析:图中阴影部分的面积为两个半圆的面积﹣三角形的面积,然后利用三角形的面积计算即可.解答:解:设各个部分的面积为:S1、S2、S3、S4、S5,如图所示,∵两个半圆的面积和是:S1+S5+S4+S2+S3+S4,△ABC的面积是S3+S4+S5,阴影部分的面积是:S1+S2+S4,∴图中阴影部分的面积为两个半圆的面积减去三角形的面积.即阴影部分的面积=π×4+π×1﹣4×2÷2=π﹣4.点评:此题的关键是看出图中阴影部分的面积为两个半圆的面积﹣三角形的面积.三、解答题(共9小题,满分69分)18.(5分)(2009•襄阳)计算:考点:分式的混合运算.专题:计算题.分析:此题的运算顺序:先括号里,经过通分,再把除法转化为乘法,约分化为最简.解答:解:原式=(2分)=(3分)=(4分)=.(5分)点评:此题一要注意运算顺序,二要注意符号的处理,如4﹣a2=﹣(a2﹣4).19.(5分)(2009•襄阳)江涛同学统计了他家10月份的电话清单,按通话时间画出直方图,从左到右分别为一、二、三、四组.如图所示.(1)他家这个月总的通话次数为次,通话时间的中位数落在第组内;(2)求通话时间不足10分钟的通话次数占总通话次数的百分率.(结果保留两个有效数字)考点:频数(率)分布直方图;中位数.专题:图表型.分析:(1)直接相加即可,根据中位数的求算方法可知中位数是第三个数据;(2)用样本来估计总体.×100%≈73%.解答:解:(1)他家这个月总的通话次数为55次,通话时间的中位数落在第二组内;故填55,二.(2)由图可知通话时间不足10分钟的通话次数为:25+15=40次,∴×100%≈73%.答:通话时间不足10分钟的通话次数占总通话次数的百分率约为73%.点评:主要考查了频数的计算方法,中位数的确定方法和用样本估计总体的能力.20.(6分)(2009•襄阳)为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A北偏西45°并距该岛20海里的B处待命.位于该岛正西方向C处的某外国商船遭到海盗袭击,船长发现在其北偏东60°的方向有我军护航舰(如图所示),便发出紧急求救信号.我护航舰接警后,立即沿BC航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置C处?(结果精确到个位.参考数据:≈1.4,≈1.7)考点:解直角三角形的应用-方向角问题.专题:应用题.分析:由条件可知△ABC为斜三角形,所以作AC上的高,转化为两个直角三角形求解.解答:解:由图可知,∠ACB=30°,∠BAC=45°.(1分)作BD⊥AC于D(如图).在Rt△ADB中,AB=20,∴BD=AB•sin45°=20×=10.(2分)在Rt△BDC中,∠ACB=30°,∴BC=2×10=20≈28.(3分)∴≈0.47.(4分)∴0.47×60=28.2≈28(分钟).(5分)答:我护航舰约需28分钟就可到达该商船所在的位置C.(6分)点评:化斜为直是解三角形的基本思路,因此需作垂线(高),原则上不破坏特殊角(30°、60°、45°).21.(6分)(2009•襄阳)实验探究:甲、乙两个不透明的纸盒中分别装有形状、大小和质地完全相同的两张和三张卡片.甲盒中的两张卡片上分别标有数字1和2,乙盒中的三张卡片分别标有数字3,4,5.小红从甲盒中随机抽取一张卡片,并将其卡片上的数字作为十位上的数字,再从乙盒中随机抽取一张卡片,将其卡片上的数字作为个位上的数字,从而组成一个两位数.(1)请你画出树状图或列表,并写出所有组成的两位数;(2)求出所组成的两位数是奇数的概率.考点:列表法与树状图法.专题:探究型.分析:列举出所有情况,让所组成的两位数是奇数的情况数除以总情况数即为所求的概率.解答:解:(1)依题意列表如下:说明:考生列表或画树状图正确记,故所组成的两位数有:13、14、15、23、24、25;十位个位12313234142451525(2)由(1)可知所有可能出现的结果有6种,且它们出现的可能性相等,其中出现奇数的情况有4种,∴,(5分)答:所组成的两位数是奇数的概率为.(6分)点评:用到的知识点为:概率=所求情况数与总情况数之比.22.(6分)(2009•襄阳)如图所示,在直角坐标系中,点A是反比例函数y1=的图象上一点,AB⊥x轴的正半轴于B点,C是OB的中点;一次函数y2=ax+b的图象经过A、C两点,并将y轴于点D(0,﹣2),若S△AOD=4.(1)求反比例函数和一次函数的解析式;(2)观察图象,请指出在y轴的右侧,当y1>y2时,x的取值范围.考点:反比例函数综合题.专题:综合题.分析:(1)需求A点坐标,由S△AOD=4,点D(0,﹣2),可求A的横坐标;由C是OB的中点,可得OD=AB求出A点纵坐标,从而求出反比例函数解析式;根据A、D两点坐标求一次函数解析式;(2)观察图象知,在交点A的左边,y1>y2.解答:解:(1)作AE⊥y轴于E,∵S△AOD=4,OD=2∴OD•AE=4∴AE=4(1分)∵AB⊥OB,C为OB的中点,∴∠DOC=∠ABC=90°,OC=BC,∠OCD=∠BCA∴Rt△DOC≌Rt△ABC∴AB=OD=2∴A(4,2)(2分)将A(4,2)代入中,得k=8,∴反比例函数的解析式为:,(3分)将A(4,2)和D(0,﹣2)代入y2=ax+b,得解之得:∴一次函数的解析式为:y2=x﹣2;(4分)(2)在y轴的右侧,当y1>y2时,0<x<4.(6分)点评:熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象解不等式时,从交点看起,函数图象在上方的函数值大.23.(8分)(2009•襄阳)如图所示,在Rt△ABC中,∠ABC=90度.将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF.连接AD.(1)求证:四边形AFCD是菱形;(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形,为什么?考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定;平行四边形的判定;菱形的判定;矩形的判定.专题:几何综合题.分析:(1)需证明△ACD是等边三角形、△AFC是等边三角形,即可证明四边形AFCD是菱形.(2)可先证四边形ABCG是平行四边形,再由∠ABC=90°,可证四边形ABCG是矩形.解答:(1)证明:Rt△DEC是由Rt△ABC绕C点旋转60°得到,∴AC=DC,∠ACB=∠ACD=60°,∴△ACD是等边三角形,∴AD=DC=AC,(1分)又∵Rt△ABF是由Rt△ABC沿AB所在直线翻转180°得到,∴AC=AF,∠ABF=∠ABC=90°,∵∠ACB=∠ACD=60°,∴△AFC是等边三角形,∴AF=FC=AC,(3分)∴AD=DC=FC=AF,∴四边形AFCD是菱形.(4分)(2)四边形ABCG是矩形.(5分)证明:由(1)可知:△ACD,△AFC是等边三角形,△ACB≌△AFB,∴∠EDC=∠BAC=∠FAC=30°,且△ABC为直角三角形,∴BC=AC,∵EC=CB,∴EC=AC,∴E为AC中点,∴DE⊥AC,∴AE=EC,(6分)∵AG∥BC,∴∠EAG=∠ECB,∠AGE=∠EBC,∴△AEG≌△CEB,∴AG=BC,(7分)∴四边形ABCG是平行四边形,∵∠ABC=90°,(8分)∴四边形ABCG是矩形.点评:此题主要考查菱形和矩形的判定,综合应用等边三角形的判定、全等三角形的判定等知识是解题的关键.24.(10分)(2009•襄阳)如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是上一点,连接AF交CE于H,连接AC、CF、BD、OD.(1)求证:△ACH∽△AFC;(2)猜想:AH•AF与AE•AB的数量关系,并说明你的猜想;(3)探究:当点E位于何处时,S△AEC:S△BOD=1:4,并加以说明.考点:相似三角形的判定与性质;三角形的面积;垂径定理;圆周角定理.专题:几何综合题.分析:(1)根据垂径定理得到弧AC=弧AD,再根据圆周角定理的推论得到∠F=∠ACH,根据两个角对应相等证明两个三角形相似;(2)连接BF,构造直角三角形,把要探索的四条线段放到两个三角形中,根据相似三角形的判定和性质证明;(3)根据三角形的面积公式,得到两个三角形的面积比即为AE:OB,进一步转化为AE:AO的比,再根据半径的长求得OE的长.解答:(1)证明:∵直径AB⊥CD,∴,∴∠F=∠ACH,又∠CAF=∠FAC,∴△ACH∽△AFC.(2)解:AH•AF=AE•AB.证明:连接FB,∵AB是直径,∴∠AFB=∠AEH=90°,又∠EAH=∠FAB,∴Rt△AEH∽Rt△AFB,∴,∴AH•AF=AE•AB.(3)解:当时,S△AEC:S△BOD=1:4.理由:∵直径AB⊥CD,∴CE=ED,∵S△AEC=AE•EC,S△BOD=OB•ED,∴===,∵⊙O的半径为2,∴,∴8﹣4OE=2,∴OE=.点评:能够综合运用垂径定理和圆周角定理的推论得到有关的角相等.掌握相似三角形的判定和性质.25.(10分)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:方案型.分析:(1)可根据“改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元”,列出方程组求出答案;(2)根据“共需资金1575万元”“A类学校不超过5所”,进行判断即可;(3)要根据“若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元”来列出不等式组,判断出不同的改造方案.解答:解:(1)设改造一所A类学校和一所B类学校所需的改造资金分别为a万元和b万元.依题意得:解得:答:改造一所A类学校和一所B类学校所需的改造资金分别为60万元和85万元;(2)设该县有A、B两类学校分别为m所和n所.则60m+85n=1575∵A类学校不超过5所∴﹣n+≤5∴n≥15即:B类学校至少有15所;(3)设今年改造A类学校x所,则改造B类学校为(6﹣x)所,依题意得:解得:1≤x≤4∵x取整数∴x=1,2,3,4答:共有4种方案.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:(1)“改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元”;(2)“共需资金1575万元”“A类学校不超过5所”;(3)“若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元”,列出方程组,再求解.26.(13分)(2009•襄阳)如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中:①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y取最小值时,判断△PQC的形状,并说明理由.考点:等腰梯形的判定;二次函数的应用;勾股定理的逆定理;平行四边形的判定;相似三角形的判定与性质.专题:综合题;压轴题;动点型.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兽医专家2025年度顾问咨询与技术支持合同2篇
- 2025版金融理财产品销售合同履约保证书4篇
- 2025年度出租车租赁与品牌推广合作合同3篇
- 2024礼品购销合同模板购销合同范本
- 2024版济宁房屋租赁合同范本
- 二零二四年专业相机租赁服务合同附带摄影师派遣及培训3篇
- 二零二五版茶叶种植基地土地流转租赁合同3篇
- 2025年养老护理机构PPP项目特许经营合同3篇
- 2025年度城市基础设施建设不定期借款合同3篇
- 二零二四年度2024绵阳租赁保证金合同模板3篇
- 2023年上海健康医学院单招职业适应性测试笔试题库及答案解析
- 考研考博-英语-常州大学考试押题卷含答案详解1
- 公司金融ppt课件(完整版)
- 徐州医科大学附属医院
- DLT 261《火力发电厂热工自动化系统可靠性评估技术导则》题库
- 自动化立体库货架验收报告
- 消防系统工程质量控制资料检查记录
- 中药封包疗法操作规范
- TPO27听力题目及答案
- 新浪网删贴申请文档 (个人)
- 低温乙烯罐内罐预冷过程温度急降原因探讨
评论
0/150
提交评论