




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WHITEPAPER
AIinvideoanalytics
Considerationsforanalyticsbasedonmachinelearninganddeeplearning
March2021
PAGE
10
PAGE
13
TableofContents
Summary
3
Introduction
4
AI,machinelearning,anddeeplearning
4
Machinelearning
4
Deeplearning
5
Classicalmachinelearningvs.deeplearning
6
Thestagesofmachinelearning
6
Datacollectionanddataannotation
7
Training
7
Testing
8
Deployment
9
Edge-basedanalytics
9
Hardwareacceleration
9
AIisstillinitsearlydevelopment
9
Considerationsforoptimalanalyticsperformance
10
Imageusability
10
Detectiondistance
11
Alarmsandrecordingsetup
11
Maintenance
12
Privacyandpersonalintegrity
13
Appendix
14
Neuralnetworks
14
Convolutionalneuralnetworks(CNN)
15
Summary
AI-basedvideoanalyticsisoneofthemostdiscussedtopicsinthevideosurveillanceindustry.Someoftheapplicationscansubstantiallyspeedupdataanalysisandautomaterepetitivetasks.ButAIsolutionstodaycannotreplacethehumanoperator’sexperienceanddecision-makingskills.Thestrengthliesinsteadinacombination:takingadvantageofAIsolutionstoimproveandincreasehumanefficiency.
TheAIconceptincorporatesmachinelearningalgorithmsanddeeplearningalgorithms.Bothtypesautomaticallybuildamathematicalmodel,usingsubstantialamountsofsampledata(trainingdata),togaintheabilitytocalculateresultswithoutbeingspecificallyprogrammedforit.AnAIalgorithmisdevelopedthroughaniterativeprocess,inwhichacycleofcollectingtrainingdata,labelingtrainingdata,usingthelabeleddatatotrainthealgorithm,andtestingthetrainedalgorithm,isrepeateduntilthedesiredqualitylevelisreached.Afterthis,thealgorithmisreadytouseinananalyticsapplicationwhichcanbepurchasedanddeployedonasurveillancesite.Atthispoint,allthetrainingisdoneandtheapplicationwillnotlearnanythingnew.
AtypicaltaskforAI-basedvideoanalyticsistovisuallydetecthumansandvehiclesinavideostreamanddistinguishwhichiswhich.Amachinelearningalgorithmhaslearnedthecombinationofvisualfeaturesthatdefinestheseobjects.Adeeplearningalgorithmismorerefinedandcan-iftrainedforit-detectmuchmorecomplexobjects.Butitalsorequiressubstantiallylargereffortsfordevelopmentandtrainingandmuchmorecomputationresourceswhenthefinalizedapplicationisused.Forwell-specifiedsurveillanceneeds,itshouldthereforebeconsideredwhetheradedicated,optimizedmachinelearningapplicationcanbesufficient.
AlgorithmdevelopmentandincreasingprocessingpowerofcamerashavemadeitpossibletorunadvancedAI-basedvideoanalyticsdirectlyonthecamera(edgebased)insteadofhavingtoperformthecomputationsonaserver(serverbased).Thisenablesbetterrealtimefunctionalitybecausetheapplicationshaveimmediateaccesstouncompressedvideomaterial.Withdedicatedhardwareaccelerators,suchasMLPU(machinelearningprocessingunit)andDLPU(deeplearningprocessingunit),inthecameras,edge-basedanalyticscanbemorepower-efficientlyimplementedthanwithaCPUorGPU(graphicsprocessingunit).
BeforeanAI-basedvideoanalyticsapplicationisinstalled,themanufacturer’srecommendationsbasedonknownpreconditionsandlimitationsmustbecarefullystudiedandfollowed.Everysurveillanceinstallationisunique,andtheapplication’sperformanceshouldbeevaluatedateachsite.Ifthequalityisfoundto
belowerthanexpected,investigationsshouldbemadeonaholisticlevel,andnotfocusonlyontheanalyticsapplicationitself.Theperformanceofvideoanalyticsisdependentonmanyfactorsrelatedtocamerahardware,cameraconfiguration,videoquality,scenedynamics,andillumination.Inmanycases,knowingtheimpactofthesefactorsandoptimizingthemaccordinglymakesitpossibletoincreasevideoanalyticsperformanceintheinstallation.
AsAIisincreasinglyappliedinsurveillance,theadvantagesofoperationalefficiencyandnewusecasesmustbebalancedwithamindfuldiscussionaboutwhenandwheretoapplythetechnology.
Introduction
AI,artificialintelligence,hasbeendevelopedanddebatedeversincethefirstcomputerswereinvented.Whilethemostrevolutionaryincarnationsarenotyethere,AI-basedtechnologiesarewidelyusedtodayforcarryingoutclearlydefinedtasksinapplicationssuchasvoicerecognition,searchengines,andvirtualassistants.AIisalsoincreasinglyemployedinhealthcarewhereitprovidesvaluableresourcesin,forexample,x-raydiagnosticsandretinascananalysis.
AI-basedvideoanalyticsisoneofthemostdiscussedtopicsinthevideosurveillanceindustryandexpectationsarehigh.ThereareapplicationsonthemarketthatuseAIalgorithmstosuccessfullyspeedupdataanalysisandautomaterepetitivetasks.Butinawidersurveillancecontext,AItodayandinthenearfutureshouldbeviewedasjustoneelement,amongseveralothers,intheprocessofbuildingaccuratesolutions.
Thiswhitepaperprovidesatechnologicalbackgroundonmachinelearninganddeeplearningalgorithmsandhowtheycanbedevelopedandappliedforvideoanalytics.ThisincludesabriefaccountofAIaccelerationhardwareandtheprosandconsofrunningAI-basedanalyticsontheedgecomparedtoonaserver.ThepaperalsotakesalookathowthepreconditionsforAI-basedvideoanalyticsperformancecanbeoptimized,takingawidescopeoffactorsintoaccount.
AI,machinelearning,anddeeplearning
Artificialintelligence(AI)isawideconceptassociatedwithmachinesthatcansolvecomplextaskswhiledemonstratingseeminglyintelligenttraits.DeeplearningandmachinelearningaresubsetsofAI.
Artificialintelligence
Machinelearning
Deeplearning
Machinelearning
MachinelearningisasubsetwithinAIthatusesstatisticallearningalgorithmstobuildsystemsthathavetheabilitytoautomaticallylearnandimproveduringtrainingwithoutbeingexplicitlyprogrammed.
Inthissection,wedistinguishbetweentraditionalprogrammingandmachinelearninginthecontextofcomputervision—thedisciplineofmakingcomputersunderstandwhatishappeninginascenebyanalyzingimagesorvideos.
Traditionallyprogrammedcomputervisionisbasedonmethodsthatcalculateanimage’sfeatures,forexample,computerprogramslookingforpronouncededgesandcornerpoints.Thesefeaturesneedtobemanuallydefinedbyanalgorithmdeveloperwhoknowswhatisimportantintheimagedata.Thedeveloperthencombinesthesefeaturesforthealgorithmtoconcludewhatisfoundinthescene.
Machinelearningalgorithmsautomaticallybuildamathematicalmodelusingsubstantialamountsofsampledata–trainingdata–togaintheabilitytomakedecisionsbycalculatingresultswithout
specificallybeingprogrammedtodoso.Thefeaturesarestillhand-craftedbuthowtocombinethesefeaturesislearnedbythealgorithmitselfthroughexposuretolargeamountsoflabeled,orannotated,trainingdata.Inthispaper,werefertothistechniqueofusinghand-craftedfeaturesinlearnedcombinations,asclassicalmachinelearning.
Inotherwords,foramachinelearningapplicationweneedtotrainthecomputertogettheprogramwewant.Dataiscollectedandthenannotatedbyhumans,sometimesassistedwithpre-annotationbyservercomputers.Theresultisfedintothesystemandthisprocessgoesonuntiltheapplicationhaslearnedenoughtodetectwhatwewanted,forexample,aspecifictypeofvehicle.Thetrainedmodelbecomestheprogram.Notethatwhentheprogramisfinishedthesystemdoesnotlearnanythingnew.
Traditionalprogramming:
Dataiscollected.Programcriteriaaredefined.Theprogramiscoded(byahuman).Done.
Machinelearning:
Dataiscollected.Dataislabeled.Themodelundergoesaniterativetrainingprocess.Thefinalizedtrainedmodelbecomestheprogram.Done.
TheadvantageofAIovertraditionalprogramming,whenbuildingacomputervisionprogram,istheabilitytoprocessextensivedata.Acomputercangothroughthousandsofimageswithoutlosingfocus,whereasahumanprogrammerwillgettiredandunfocusedafterawhile.Thatway,theAIcanmaketheapplicationsubstantiallymoreaccurate.However,themorecomplicatedtheapplication,theharderitisforthemachinetoproducethewantedresult.
Deeplearning
Deeplearningisarefinedversionofmachinelearninginwhichboththefeatureextractionandhowtocombinethesefeatures,indeepstructuresofrulestoproduceanoutput,arelearnedinadata-drivenmanner.Thealgorithmcanautomaticallydefinewhatfeaturestolookforinthetrainingdata.Itcanalsolearnverydeepstructuresofchainedcombinationsoffeatures.
Thecoreofthealgorithmsusedindeeplearningisinspiredbyhowneuronsworkandhowthebrainusesthesetoformhigher-levelknowledgebycombiningtheneuronoutputsinadeephierarchy,oranetwork,
ofchainedrules.Thebrainisasysteminwhichthecombinationsthemselvesarealsoformedbyneurons,erasingthedistinctionbetweenfeatureextractionandthecombinationoffeatures,makingthemthesameinsomesense.Thesestructuresweresimulatedbyresearchersintosomethingcalledartificialneuralnetworks,whichisthemostwidelyusedtypeofalgorithmindeeplearning.Seetheappendixofthisdocumentforabriefoverviewofneuralnetworks.
Usingdeeplearningalgorithms,itispossibletobuildintricatevisualdetectorsandautomaticallytrainthemtodetectverycomplexobjects,resilienttoscale,rotation,andothervariations.
Thereasonbehindthisflexibilityisthatdeeplearningsystemscanlearnfromamuchlargeramountofdata,andmuchmorevarieddata,thanclassicalmachinelearningsystems.Inmostcases,theywillsignificantlyoutperformhand-craftedcomputervisionalgorithms.Thismakesdeeplearningespecially
suitedforcomplexproblemswherethecombinationoffeaturescannoteasilybeformedbyhumanexperts,suchasimageclassification,languageprocessing,andobjectdetection.
Objectdetectionbasedondeeplearningcanclassifycomplexobjects.Inthisexample,theanalyticsapplicationcannotonlydetectvehicles,butalsoclassifythetypeofvehicle.
Classicalmachinelearningvs.deeplearning
Whiletheyaresimilartypesofalgorithms,adeeplearningalgorithmtypicallyusesamuchlargersetoflearnedfeaturecombinationsthanaclassicalmachinelearningalgorithmdoes.Thismeansthatdeeplearning-basedanalyticscanbemoreflexibleandcan-iftrainedto-learntoperformmuchmorecomplextasks.
Forspecificsurveillanceanalytics,however,adedicated,optimizedclassicalmachinelearningalgorithmcanbesufficient.Inawellspecifiedscope,itcanprovidesimilarresultsasadeeplearningalgorithmwhilerequiringlessmathematicaloperationsandcanthereforebemorecost-efficientandlesspowerconsumingtouse.Itfurthermorerequiresmuchlesstrainingdataandthisgreatlyreducesthedevelopmenteffort.
Thestagesofmachinelearning
Thedevelopmentofamachinelearningalgorithmfollowsaseriesofstepsanditerations,roughlyvisualizedbelow,beforeafinalizedanalyticsapplicationcanbedeployed.Attheheartofananalyticsapplicationis
oneormorealgorithms,forexampleanobjectdetector.Inthecaseofdeeplearningbasedapplicationsthecoreofthealgorithmisthedeeplearningmodel.
Preparation:Definingthepurposeoftheapplication.
Training:Collectingtrainingdata.Annotatingthedata.Trainingthemodel.Testingthemodel.Ifqualityisnotasexpected,thepreviousstepsaredoneagaininaniterativeimprovementcycle.
Deployment:Installingandusingthefinishedapplication.
Datacollectionanddataannotation
TodevelopanAI-basedanalyticsapplicationyouneedtocollectlargeamountsofdata.Invideosurveillance,thistypicallyconsistsofimagesandvideoclipsofhumansandvehiclesorotherobjectsofinterest.Inordertomakethedatarecognizableforamachineorcomputeradataannotationprocessisnecessary,wheretherelevantobjectsarecategorizedandlabeled.Dataannotationismainlyamanualandlabor-intensetask.Theprepareddataneedstocoveralarge-enoughvarietyofsamplesthatarerelevantforthecontextwheretheanalyticsapplicationwillbeused.
Training
Training,orlearning,iswhenthemodelisfedannotateddataandatrainingframeworkisusedtoiterativelymodifyandimprovethemodeluntilthedesiredqualityisreached.Inotherwords,themodelisoptimizedtosolvethedefinedtask.Trainingcanbedoneaccordingtooneofthreemainmethods.
Supervisedlearning:themodellearnstomakeaccuratepredictions
Unsupervisedlearning:Themodellearnstoidentifyclusters
Reinforcementlearning:Themodellearnsfrommistakes
Supervisedlearning
Supervisedlearningisthemostusedmethodinmachinelearningtoday.Itcanbedescribedaslearningbyexamples.Thetrainingdataisclearlyannotated,meaningthattheinputdataisalreadypairedwiththedesiredoutputresult.
Supervisedlearninggenerallyrequiresaverylargeamountofannotateddataandtheperformanceofthetrainedalgorithmisdirectlydependentonthequalityofthetrainingdata.Themostimportantqualityaspectistouseadatasetthatrepresentsallpotentialinputdatafromarealdeploymentsituation.Forobjectdetectors,thedevelopermustmakesuretotrainthealgorithmwithawidevarietyofimages,withdifferentobjectsinstances,orientations,scales,lightsituations,backgrounds,anddistractions.Onlyifthetrainingdataisrepresentativefortheplannedusecase,thefinalanalyticsapplicationwillbeabletomakeaccuratepredictionsalsowhenprocessingnewdata,unseenduringthetrainingphase.
Unsupervisedlearning
Unsupervisedlearningusesalgorithmstoanalyzeandgroupunlabeleddatasets.Thisisnotacommontrainingmethodinthesurveillanceindustry,becausethemodelrequiresalotofcalibrationandtestingwhilethequalitycanstillbeunpredictable.
Thedatasetsmustberelevantfortheanalyticsapplicationbutdonothavetobeclearlylabeledormarked.Themanualannotationworkiseliminated,butthenumberofimagesorvideosneededforthetrainingmustbegreatlyincreased,byseveralordersofmagnitude.Duringthetrainingphase,theto-be-trainedmodelisidentifying,supportedbythetrainingframework,commonfeaturesinthedatasets.Thisenablesitto,duringthedeploymentphase,groupdataaccordingtopatternswhilealsoallowingittodetectanomalieswhichdonotfitintoanyofthelearnedgroups.
Reinforcementlearning
Reinforcementlearningisusedin,forexample,robotics,industrialautomation,andbusinessstrategyplanning,butduetotheneedforlargeamountsoffeedback,themethodhaslimiteduseinsurveillancetoday.Reinforcementlearningisabouttakingsuitableactiontomaximizethepotentialrewardinaspecificsituation,arewardthatgetslargerwhenthemodelmakestherightchoices.Thealgorithmdoesnotusedata/labelpairsfortraining,butisinsteadoptimizedbytestingitsdecisionsthroughinteractionwiththeenvironmentwhilemeasuringthereward.Thegoalofthealgorithmistolearnapolicyforactionsthatwillhelpmaximizethereward.
Testing
Oncethemodelistrained,itneedstobethoroughlytested.Thissteptypicallycontainsanautomatedpartcomplementedwithextensivetestinginreal-lifedeploymentsituations.
Intheautomatedpart,theapplicationisbenchmarkedwithnewdatasets,unseenbythemodelduringitstraining.Ifthesebenchmarksarenotwheretheyareexpectedtobe,theprocessstartsoveragain:newtrainingdataiscollected,annotationsaremadeorrefinedandthemodelisretrained.
Afterreachingthewantedqualitylevel,afieldteststarts.Inthistest,theapplicationisexposedtorealworldscenarios.Theamountandvariationdependonthescopeoftheapplication.Thenarrowerthescope,thelessvariationsneedtobetested.Thebroaderthescope,themoretestsareneeded.
Resultsareagaincomparedandevaluated.Thisstepcanthenagaincausetheprocesstostartover.Anotherpotentialoutcomecouldbetodefinepreconditions,explainingaknownscenarioinwhichtheapplicationisnotoronlypartlyrecommendedtobeused.
Deployment
Thedeploymentphaseisalsocalledinferenceorpredictionphase.Inferenceorpredictionistheprocessofexecutingatrainedmachinelearningmodel.Thealgorithmuseswhatitlearnedduringthetrainingphasetoproduceitsdesiredoutput.Inthesurveillanceanalyticscontext,theinferencephaseistheapplicationrunningonasurveillancesystemmonitoringreallifescenes.
Toachievereal-timeperformancewhenexecutingamachinelearningbasedalgorithmonaudioorvideoinputdata,specifichardwareaccelerationisgenerallyrequired.
Edge-basedanalytics
High-performancevideoanalyticsusedtobeserverbasedbecausetheyrequiredmorepower,andcooling,thanacameracouldoffer.ButalgorithmdevelopmentandincreasingprocessingpowerofedgedevicesinrecentyearshavemadeitpossibletorunadvancedAI-basedvideoanalyticsontheedge.
Thereareobviousadvantagesofedgebasedanalyticsapplications:theyhaveaccesstouncompressedvideomaterialwithverylowlatency,enablingrealtimeapplicationswhileavoidingtheadditionalcostandcomplexityofmovingdataintothecloudforcomputations.Edgebasedanalyticsalsocomewithlowerhardwareanddeploymentcostssincelessserverresourcesareneededinthesurveillancesystem.
Someapplicationsmaybenefitfromusingacombinationofedgebasedandserverbasedprocessing,withpreprocessingonthecameraandfurtherprocessingontheserver.Suchahybridsystemcanfacilitatecost-efficientscalingofanalyticsapplicationsbyworkingonseveralcamerastreams.
Hardwareacceleration
Whileyoucanoftenrunaspecificanalyticsapplicationonseveraltypesofplatforms,usingdedicatedhardwareaccelerationachievesamuchhigherperformancewhenpowerislimited.Hardwareacceleratorsenablepower-efficientimplementationofanalyticsapplications.Theycanbecomplementedbyserverandcloudcomputeresourceswhensuitable.
GPU(graphicsprocessingunit).GPUsweremainlydevelopedforgraphicsprocessingapplicationsbutarealsousedforacceleratingAIonserverandcloudplatforms.Whilesometimesalsousedinembeddedsystems(edge),GPUsarenotoptimal,fromapowerefficiencystandpoint,formachinelearninginferencetasks.
MLPU(machinelearningprocessingunit).AnMLPUcanaccelerateinferenceofspecificclassicalmachinelearningalgorithmsforsolvingcomputervisiontaskswithveryhighpowerefficiency.Itisdesignedforreal-timeobjectdetectionofalimitednumberofsimultaneousobjecttypes,forexample,humansandvehicles.
DLPU(deeplearningprocessingunit).Cameraswithabuilt-inDLPUcanaccelerategeneraldeeplearningalgorithminferencewithhighpowerefficiency,allowingforamoregranularobjectclassification.
AIisstillinitsearlydevelopment
ItistemptingtomakeacomparisonbetweenthepotentialofanAIsolutionandwhatahumancanachieve.Whilehumanvideosurveillanceoperatorscanonlybefullyalertforashortperiodoftime,acomputercankeepprocessinglargeamountsofdataextremelyquicklywithoutevergettingtired.
ButitwouldbeafundamentalmisunderstandingtoassumethatAIsolutionswouldreplacethehuman
operator.Therealstrengthliesinarealisticcombination:takingadvantageofAIsolutionstoimproveandincreasetheefficiencyofahumanoperator.
Machinelearningordeeplearningsolutionsareoftendescribedashavingthecapabilitytoautomaticallylearnorimprovethroughexperience.ButAIsystemsavailabletodaydonotautomaticallylearnnewskillsafterdeploymentandwillnotrememberspecificeventsthathaveoccurred.Toimprovethesystem’sperformance,itneedstoberetrainedwithbetterandmoreaccuratedataduringsupervisedlearningsessions.Unsupervisedlearningtypicallyrequiresalotofdatatogenerateclustersandisthereforenotusedinvideosurveillanceapplications.Itisinsteadusedtodaymainlyforanalyzinglargedatasetstofindanomalies,forexampleinfinancialtransactions.Mostapproachesthatarepromotedas“self-learning”withinvideosurveillancearebasedonastatisticaldataanalysisandnotonactuallyretrainingthedeeplearningmodels.
HumanexperiencestillbeatsmanyAI-basedanalyticsapplicationsforsurveillancepurposes.Especiallythosewhicharesupposedtoperformverygeneraltasksandwherecontextualunderstandingiscritical.Amachinelearningbasedapplicationmightsuccessfullydetecta“runningperson”ifspecificallytrainedforitbutunlikeahumanwhocanputthedataintocontext,theapplicationhasnounderstandingofwhythepersonisrunning–tocatchthebusorfleefromthenearbyrunningpoliceofficer?DespitepromisesfromcompaniesapplyingAIintheiranalyticsapplicationsforsurveillance,theapplicationcannotyetunderstandwhatitseesonvideowithremotelythesameinsightasahumancan.
Forthesamereason,AI-basedanalyticsapplicationscanalsotriggerfalsealarmsormissalarms.Thiscouldtypicallyhappeninacomplexenvironmentwithalotofmovement.Butitcouldalsobeabout,forexample,apersoncarryingalargeobject—effectivelyobstructingthehumancharacteristicstotheapplication,makingacorrectclassificationlesslikely.
AI-basedanalyticstodayshouldbeusedinanassistingway,forexample,toroughlydeterminehowrelevantanincidentisbeforealertingahumanoperatortodecideabouttheresponse.Thisway,AIisusedtoreachscalabilityandthehumanoperatoristheretoassesspotentialincidents.
Considerationsforoptimalanalyticsperformance
TonavigatethequalityexpectationsofanAI-basedanalyticsapplication,itisrecommendedtocarefullystudyandunderstandtheknownpreconditionsandlimitations,typicallylistedintheapplication’sdocumentation.
Everysurveillanceinstallationisuniqueandtheapplication’sperformanceshouldbeevaluatedateachsite.Ifthequalityisnotattheexpectedoranticipatedlevel,itisstronglyrecommendedtonotonlyfocustheinvestigationontheapplicationitself.Allinvestigationsshouldbemadeonaholisticlevelbecausetheperformanceofananalyticsapplicationdependsonsomanyfactors,mostofwhichcanbeoptimizedifweareawareoftheirimpact.Thesefactorsinclude,forexample,camerahardware,videoquality,scenedynamics,illuminationlevel,aswellascameraconfiguration,position,anddirection.
Imageusability
Imagequalityisoftensaidtodependonhighresolutionandhighlightsensitivityofthecamera.Whiletheimportanceofthesefactorscannotbequestioned,therearecertainlyothersthatarejustasinfluentialfortheactualusabilityofanimageoravideo.Forexample,thebestqualityvideostreamfromthemostexpensivesurveillancecameracanbeuselessifthesceneisnotsufficientlylitatnight,ifthecamerahasbeenredirected,orifthesystemconnectionisbroken.
Theplacementofthecamerashouldbecarefullyconsideredbeforedeployment.Forvideoanalyticstoperformasexpected,thecameraneedstobepositionedtoenableaclearview,withoutobstacles,oftheintendedscene.
Imageusabilitymayalsodependontheusecase.Videothatlooksgoodtoahumaneyemaynothavetheoptimalqualityfortheperformanceofavideoanalyticsapplication.Infact,manyimageprocessingmethodsthatarecommonlyusedtoenhancevideoappearanceforhumanviewingarenotrecommendedwhenusingvideoanalytics.Thismayinclude,forexample,appliednoisereductionmethods,widedynamicrangemethods,orautoexposurealgorithms.
VideocamerastodayoftencomewithintegratedIRilluminationwhichenablesthemtoworkincompletedarkness.Thisispositiveasitmayenablecamerastobeplacedondifficult-lightsitesandreducetheneedforinstallingadditionalillumination.However,ifheavyrainorsnowfallareexpectedonasite,itishighlyrecommendednottorelyonlightcomingfromthecameraorfromalocationveryclosetothecamera.
Toomuchlightmaybedirectlyreflectedbacktothecamera,againstraindropsandsnowflakes,makingtheanalyticsunabletoperform.Withambientlight,ontheotherhand,thereisabetterchancethattheanalyticswilldeliversomeresultsevenindifficultweather.
Detectiondistance
ItisdifficulttodetermineamaximumdetectiondistanceofanAI-basedanalyticsapplication—anexactdatasheetvalueinmetersorfeetcanneverbethewholetruth.Imagequality,scenecharacteristics,weatherconditions,andobjectpropertiessuchascolorandbrightnesshaveasignificantimpactonthedetectiondistance.Itisevident,forexample,thatabrightobjectagainstadarkbackgroundduringasunnydaycanbevisuallydetectedatmuchlongerdistancesthanadarkobjectonarainyday.
Thedetectiondistancealsodependsonthespeedoftheobjectstobedetected.Toachieveaccurateresults,avideoanalyticsapplicationneedsto“see”theobjectduringasufficientlylongperiodoftime.Howlongthatperiodneedstobedependsontheprocessingperformance(framerate)oftheplatform:thelowertheprocessingperformance,thelongertheobjectneedstobevisibleinordertobedetected.Ifthecamera’sshuttertimeisnotwellmatchedwiththeobjectspeed,motionblurappearingintheimagemayalsolowerthedetectionaccuracy.
Fastobjectsmaybemoreeasilymissediftheyarepassingbyclosertothecamera.Arunningpersonlocatedfarfromthecamera,forexample,mightbewelldetected,whileapersonrunningveryclosetothecameraatthesamespeedmaybeinandoutofthefieldofviewsoquicklythatnoalarmistriggered.
Inanalyticsbasedonmovementdetection,objectsmovingdirectlytowardsthecamera,orawayfromit,presentanotherchallenge.Detectionwillbeespeciallydifficultforslow-movingobjects,whichwillonlycauseverysmallchangesintheimagecomparedtomovementacrossthescene.
Ahigherresolutioncameratypicallydoesnotprovidealongerdetectiondistance.Theprocessingcapabilitiesneededforexecutingamachinelearningalgorithmareproportionaltothesizeoftheinputdata.Thismeansthatth
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年河北省定州市辅警招聘考试试题题库含答案详解(a卷)
- 2025年K2学校STEM课程实施与科学教育改革研究报告
- 初中美术九年级上册统编教案
- 偏头痛诊治攻略2025
- 世界人口日人口发展现状老龄化探讨提升出生人口素质课件
- 初中数学九年级下册统编教案 7.6用锐角三角函数解决问题(第1课时)
- 2025届高考物理大一轮复习课件 第六章 第31课时 专题强化:动力学和能量观点的综合应用
- DeepSeek大模型教育领域解决方案
- 江苏省苏州市2024-2025学年七年级下学期生物期末模拟试卷 (含解析)
- 相似三角形测试题及答案
- 全科专业住院医师规范化培训全科教学查房规范
- -AAR工具的介绍课件完整版
- 糖尿病足溃疡感染的抗生素治疗
- 药用菊花规范化种植及深加工项目可研报告
- GB/T 22315-2008金属材料弹性模量和泊松比试验方法
- 文字图形创意课件
- (完整版)普外科出科考试试题
- 残疾青少年与扶持课件
- 2022年宁夏宁东开发投资有限公司招聘笔试试题及答案解析
- 冠脉造影术前术后的护理课件
- 2023年云南省肿瘤医院医护人员招聘笔试题库及答案解析
评论
0/150
提交评论