




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Artificialintelligence,
MachineLearning
and
DeepLearning
aretermsyoumighthearoften,butcanyoureallytellthedifferencebetweenthethree?Let’sfindout.
ArtificialIntelligence
Abitofhistory
Theterm
ArtificialIntelligence
firstappearedin1956duringa
Dartmouthconference
tointroducecomputermethodsthatwouldbeabletodemonstratereasonandcreativityinsolvingtaskswithgreaterefficiencyandproductivitythanhumans.
Evolutionoftheterm
+442071835820
info@magora.co.uk
sales@magora.co.uk
Whenwe’retalkingabouttheAIoftoday,weshouldn’tinterpret“intelligence”inthesamewayas“intellect”.
Creatinghuman-likemachinesisafairlyinterestingconceptfromascientificpointofviewbutisn’twhatindustriesdemand.
Wedon’tneedemotionalrobotslikeinthefilm“BicentennialMan”.Whatwedoneedistoprovidelightning-fastcustomersupport,analysefinancialtrendswithadvancedaccuracyandincreasesafetybycheckinginvisitorsusingasystemthatcannotbefooledorbribed.Andthiscanbeachievedbyapplyingadvanced
mathematicalalgorithms
.
So,AIisascientificfieldthatistryingtomodelthemostsignificantintellectualfunctionsofthehumanbrain:
naturallanguageprocessing
,autonomouslearningandcreativity.
However,withinthescopeofthisterm,wecanalsoreferto
ITareaofexpertise.Thegoalistocreateintelligentsystemsthatcanmakereasonabledecisionsandtakeindependentactionsinordertosolvetasks,thusliberatingstafffromroutinejobs,optimisingbusinessprocessesandsoon;
itcanbealsounderstoodasthegeneralabilityofanartificiallymodifiedsystemtointerprettheenvironmentordatainput,learnfromitandusethisknowledgetoachievecertaingoals.
AIspecialistsaremainlygoingintwodirections:
solvingproblemsconnectedwiththedevelopmentandimplementationof
AIsystems
inordertobringthemfurtherinlinewithhumancapabilities;
creatingsoftwarethatconnectsallthelatestachievementsintoonesystemeffectiveatsatisfyingtheneedsofthemarket.
+442071835820
info@magora.co.uk
sales@magora.co.uk
InordertocreateanArtificialIntelligencesolution,weneedtoapplyoneorseveralofthefollowingmethods:
MachineReasoning–thisencompassestheprocessesofplanning,datarepresentation,searchingandoptimisationforAIsystems;
Robotics–thisisthefieldofsciencethatconcernsbuilding,developingandcontrollingrobots,includinghardwareissues(sensors,trackersanddrives)andintegrationofallthecomponentsintothecybersystems’architecture;
MachineLearningisthestudyofalgorithmsandcomputermodelsasusedbymachinesinordertoperformagiventask.SomeexamplesareClassicalLearning,NeuralnetworksandReinforcementLearning.
Allinall,artificialintelligenceincludesmachinelearningasoneofthemethodsofitspracticalimplementation.Withinmachinelearning,therearemanydifferentalgorithmssuchas
T-
distributedscholasticneighbour
embedding,
Leabra
and
Neuralnetworks(NN)
.Inturn,DeeplearningisjustoneoftheimplementationmethodsforNNalgorithms,alsoknownasdeepneurallearningordeepneuralnetwork.
AbitmoreaboutMachineLearningandDeepLearning
+442071835820
info@magora.co.uk
sales@magora.co.uk
YoucancallMachineLearningaclassoragroupofmethodsthathasthegoalofteachingacomputertosolveataskduringtheprocessofcrackingsimilartasksandfindingpatterns.Therearedifferentwaystoclassifythesemethods.
Thisisthesystemwehavechosen:
supervised,whereahumanguidesthecomputerandcorrectsitsmistakes;unsupervised,wherethemachinelearnstofindpatternsbyitself;
reinforcement-throughasystemoftreatsandpunishmentsthecomputerlearnstotaketheoptimumactionsinacertainenvironment.
Nowlet’shaveamoredetailedlookathowexactlytheprocessofMachinelearninghappens.
Howdoesthecomputerlearn?
DataScience
+442071835820
info@magora.co.uk
sales@magora.co.uk
DataScienceliesattheheartofAItechnology.WhatdodatascientistsdoandhowisitconnectedwithMachineLearning?
Forthecomputertolearnitisnecessarytohavethesethreecomponents:
Adataset–acollectionofvaluesthatrelatetoaparticulararea.Forinstance,aclassregisterisadatabaseofgradesofacertaingroupofstudentsinmanydifferentsubjects;
features–atraitthatrepresentsmeasurablepiecesofdatathatcanbeusedforanalysis.Followingourexample,itcantaketheformofcolumnssuchas“Name”,“Subject”or“Grade”;algorithm–computermethodsofsolvingacertaintask.Forexample,youcanwriteanalgorithmthatcalculatestheaveragescoreineachsubject.
Datascientists
arethepeoplewhocollect,filterandclassifydatainordertoprovidethecomputerwithclearmaterialbywhichtolearn.Errorsandlacunesindatabasesleadtoincorrectresults.So,withouttheworkofdatascientists,eventhemostsophisticatedAIalgorithmsareuseless.
Computerlearning
+442071835820
info@magora.co.uk
sales@magora.co.uk
TomakeMLworkyouneedahugecollectionofdata–thiscancompriseimages,videos,textorevensituations.Youwanttoteachthecomputertoperformacertainaction–forexample,findphotosthatcontainkitties–andputthemintoaspecialfolder.
Foreachimagethatyoushowthecomputerinthiscase,oneresponsewouldbegiven–it’seitherakittyornotakitty.Thisdependencybetweentheobject(theimage)andresponse(kittyornotkitty)iscalledatrainingset.
+442071835820
info@magora.co.uk
sales@magora.co.uk
IfyouchoosetoworkwithDeepLearning,yousimplydownload100thousandimagesofkittiestotheprocessorandwaituntilitfindsthepatterns–fourlegs,twoears,atailandsoon.Themachineneedstoretrievethehiddenpatternsinordertobuildanalgorithmthatisabletoprovideaclassificationpreciseenoughtoapplytoeverypossibleinputobject.
Aninductionmethodlike
ReinforcementLearning
impliesthatyouallowthecomputertolearnbyitselfthroughtrialanderror.Thecomputergetsarewardeverytimeitdoessomethingright.Forexample,inthecaseofadriverlesscar,nothittingthepassengerwillearnit+500points.Ifitmakesmistakesthehumanwilldeductthepoints–verysimilartothewayinwhichchildrenlearn.Inclassicalmachinelearning,youcaneithersitandhighlightthetraitstypicalforcatsyourself,oryoucanuseunsupervisedmethodslikeclassificationandclustering.Inordertoestimatetheprecisionoftheresponsesyouget,youneedtoinventfunctionalqualitycriteria.
Inreallife,thetaskscanbeverydifferent.Forexample,thedataconcerningtheobjectscanbeincomplete,imprecise,non-quantitativeandheterogeneous.Variousmethodscopewithcertaintasksbetterthanwithothers,whichiswhythereareso
manydifferentmethods
.
Asfortheresults,machinessometimesdoachieveimpressiveresultsin
diagnosisand
businessintelligence
,thoughthey’restillveryfarfrombeingabletolearnwithouthumanhelp.
Moredetailsaboutdeeplearningareavailableviathis
link.
Popularmachinelearningalgorithms
+442071835820
info@magora.co.uk
sales@magora.co.uk
WehavealreadytalkedaboutDeepLearningandReinforcementLearning,butthereareotherpopularalgorithmsthatweuseeveryday.Forexample:
NaiveBayesclassifier
–usedforspamfiltration,frauddetectionandsentimentanalysis.
Regression–oftenappliedtoforecaststockfluctuationsandmedicaldiagnosis.
Clustering–usedtoanalyseandlabeldataformarketsegmentationandconsumerbehaviour.
Generalisation–recommendationsystems,riskmanagement.
NeuralNetworks–betterthananyothersystemforfacerecognition,butcopeswellwithpracticallyanytask.
Todayit’sbelievedthattrainingcomputerstothinklikehumansismorelikelytobeachievedthroughtheuseofneuralnetworks.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全新劳务包工包料合同(2025版)
- 论行政协议(2025版)
- 苏州二手房买卖合同样本2025年
- 商砼购销合同范本(2025版)
- 亮化工程合同模板(2025版)
- 美甲店用工合同2025年
- 升压站施工合同范本2025年
- 农田租赁协议模板(2025版)
- 离婚协议范本2025年
- 人事考核题目及答案
- 茅台质量管理办法
- T-WAA 015-2025 家庭场景 WLAN 单设备网络性能及体验技术要求(基于 IEEE 802.11be)
- 市场专员笔试试题及答案
- 江苏岚泽能源科技有限公司岚泽大丰港年产30万吨绿色甲醇项目环评资料环境影响
- 大班早期阅读培训
- “七步成诗法”金字塔沟通法则
- 美丽田园医疗招股说明书分析报告:国内美容连锁龙头美与健康
- 央国企招聘考试一本通
- 工商银行全国地区码
- 小学六年级数学计算题100道(含答案)
- GB/T 36548-2018电化学储能系统接入电网测试规范
评论
0/150
提交评论