




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
/digital-health
Vol3April2021
e
PAGE
250
e
PAGE
259
/digital-health
Vol3April2021
Articles
Deeplearning-basedartificialintelligencemodeltoassistthyroidnodulediagnosisandmanagement:amulticentrediagnosticstudy
SuiPeng*,YihaoLiu*,WeimingLv*,LongzhongLiu*,QianZhou*,HongYang,JieRen,GuangjianLiu,XiaodongWang,XuehuaZhang,QiangDu,FangxingNie,GaoHuang,YuchenGuo,JieLi,JinyuLiang,HangtongHu,HanXiao,ZelongLiu,FenghuaLai,QiuyiZheng,HaiboWang,YanbingLi,ErikKAlexander,WeiWang,HaipengXiao
Summary
BackgroundStrategiesforintegratingartificialintelligence(AI)intothyroidnodulemanagementrequireadditionaldevelopmentandtesting.Wedevelopedadeep-learningAImodel(ThyNet)todifferentiatebetweenmalignanttumoursandbenignthyroidnodulesandaimedtoinvestigatehowThyNetcouldhelpradiologistsimprovediagnosticperformanceandavoidunnecessaryfineneedleaspiration.
MethodsThyNetwasdevelopedandtrainedon18049imagesof8339patients(trainingset)fromtwohospitals(theFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China,andSunYat-senUniversityCancerCenter,Guangzhou,China)andtestedon4305imagesof2775patients(totaltestset)fromsevenhospitals(theFirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine,Guangzhou,China;theSixthAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China;theGuangzhouArmyGeneralHospital,Guangzhou,China;theThirdAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China;theFirstAffiliatedHospitalofSunYat-senUniversity;SunYat-senUniversityCancerCenter;andtheFirstAffiliatedHospitalofGuangxiMedicalUniversity,Nanning,China)inthreestages.Allnodulesinthetrainingandtotaltestsetwerepathologicallyconfirmed.ThediagnosticperformanceofThyNetwasfirstcomparedwith12radiologists(testsetA);aThyNet-assistedstrategy,inwhichThyNetassisteddiagnosesmadebyradiologists,wasdevelopedtoimprovediagnosticperformanceofradiologistsusingimages(testsetB);theThyNetassistedstrategywasthentestedinareal-worldclinicalsetting(usingimagesandvideos;testsetC).Inasimulatedscenario,thenumberofunnecessaryfineneedleaspirationsavoidedbyThyNet-assistedstrategywascalculated.
FindingsTheareaunderthereceiveroperatingcharacteristiccurve(AUROC)foraccuratediagnosisofThyNet(0·922[95%CI0·910–0·934])wassignificantlyhigherthanthatoftheradiologists(0·839[0·834–0·844];p<0·0001).Furthermore,ThyNet-assistedstrategyimprovedthepooledAUROCoftheradiologistsfrom0·837(0·832–0·842)whendiagnosingwithoutThyNetto0·875(0·871–0·880;p<0·0001)withThyNetforreviewingimages,andfrom0·862(0·851–0·872)to0·873(0·863–0·883;p<0·0001)intheclinicaltest,whichusedimagesandvideos.Inthesimulatedscenario,thenumberoffineneedleaspirationsdecreasedfrom61·9%to35·2%usingtheThyNet-assistedstrategy,whilemissedmalignancydecreasedfrom18·9%to17·0%.
InterpretationTheThyNet-assistedstrategycansignificantlyimprovethediagnosticperformanceofradiologistsandhelpreduceunnecessaryfineneedleaspirationsforthyroidnodules.
FundingNationalNaturalScienceFoundationofChinaandGuangzhouScienceandTechnologyProject.
Copyright©2021TheAuthor(s).PublishedbyElsevierLtd.ThisisanOpenAccessarticleundertheCCBY-NC-ND
4.0license.
LancetDigitHealth2021;3:e250–59
*Contributedequallytothiswork
ClinicalTrialsUnit
(ProfSPengPhD,YLiuMD,
QZhouMS,ProfHWangMPH),DepartmentofEndocrinology(YLiu,FLaiMM,QZhengMD,ProfYLiPhD,ProfHXiaoPhD),DepartmentofMedicalUltrasonics,InstituteofDiagnosticandInterventionalUltrasound(YLiu,JLiangPhD,HHuMD,HanXiaoMD,
ZLiuMD,ProfWWang),andDepartmentofBreastandThyroidSurgery
(ProfWLvPhD,JLiPhD),
TheFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China;DepartmentofUltrasound,SunYat-senUniversityCancerCenter,StateKeyLaboratoryofOncologyinSouthChina,Guangzhou,China(LLiuPhD);DepartmentofMedicalUltrasound,theFirstAffiliatedHospitalofGuangxiMedicalUniversity,Nanning,China(ProfHYangPhD);DepartmentofMedicalUltrasonics,
theThirdAffiliatedHospitalofSunYat-senUniversity,
Guangzhou,China
(ProfJRenPhD);DepartmentofMedicalUltrasonics,theSixthAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China(GLiuPhD);DepartmentofMedicalUltrasonics,theFirstAffiliated
Introduction
Thyroidnodulesarefoundinupto68%ofasymptomaticadultsinthegeneralpopulation.1Approximately7–15%ofthyroidnodulesarethyroidcancer,whichisthemostrapidlyincreasingmalignancyinallpopulations.2Thelargenumberofthyroidnodules,withonlyafractionbeingcancerous,callsforareliablemethodtoaccuratelydifferentiatemalignantfrombenignnodules.
Routinedecisionmakingforpatientswiththyroidnodulesdependsonultrasoundorinvasivefineneedleaspiration.2However,theassessmentofultrasound
featuresistimeconsuming,subjective,andoftendependentonaradiologist’sexperienceandtheavailableultrasounddevices.3Ultrasoundconclusionsareofteninconsistentandevenwithfineneedleaspirations15–30%ofthesamplesstillyieldindeterminatecytologicalfindings.4Additionalrobustmethodsareneededtoimprovediagnosisandfineneedleaspirationstrategiestoadapttotheexponentialgrowthofpatientneedsandburdenonmedicalservices.
Artificialintelligence(AI)hasbeenreportedtomeetorexceedhumanexpertsinmedicalimaging.5–8Afew
HospitalofGuangzhouUniversityofChineseMedicine,Guangzhou,China(XWangMD);DepartmentofUltrasound,theGuangzhouArmyGeneralHospital,
Guangzhou,China
(XZhangMD);Xiaobaishiji,Beijing,China(QDuME,
FNieME,GHuangDE);InstituteforBrainandCognitiveSciences,TsinghuaUniversity,Beijing,China
(YGuoME);ThyroidSection,
Articles
Articles
Researchincontext
Evidencebeforethisstudy TheThyNet-assistedstrategynotonlyimprovedthe
WesearchedPubMedfromtheinceptionofthedatabaseto performanceofradiologistswhenreviewingimagesonly,
Sept20,2020,forresearcharticleswiththesearchterms“deep butalsowhenreviewingimagesandvideosinaclinicalsetting.learning”OR“machinelearning”OR“artificialintelligence”OR OfnotethecombinationoftheAmericanCollegeof“convolutionalneuralnetwork”AND“thyroidcancer”OR“thyroid RheumatologyThyroidImagingReportingandDataSystemnodule”OR“thyroidcarcinoma”,withoutlanguagerestrictions. classificationwithAIassistanceimprovedthenegative
Weidentified15studiesonthedevelopmentandvalidationofpredictivevalueandpositivepredictivevalueofthyroidnoduleartificialintelligence(AI)modelsinthyroidnodulemanagement.differentiation,whichreducedthenumberofunnecessaryfineHowever,thesestudiescomparedtheperformanceofradiologistsneedleaspiration.
withthatoftheAImodel.Wefoundnopublicationsthat Implicationsofalltheavailableevidence
specificallyreportedhowdiagnosticdeep-learningormachine-
learningalgorithmscouldassistradiologistsperformancein ThyNet-assistedstrategycouldsignificantlyimprovethethyroidnodulemanagement.Theabsenceofmulticentretraining diagnosticperformanceofradiologistsandhelpreducethecohortsandasmallnumberofultrasounddevicesinprevious numberofunnecessaryfineneedleaspirationsforthyroidstudiesrestrictedtheirgeneralisabilityinclinicalpractice. nodules.Onthebasisofourfindings,AIdiagnosticprogrammes
shouldberolledouttoclinicalpracticeofthyroidnodule
Addedvalueofthisstudy management.Toourknowledge,thisstudyisthefirsttodevelopan
AI-assistedstrategyforthyroidnodulemanagement.
Brigham&Women’sHospital,HarvardMedicalSchool,
Boston,MA,USA
(ProfEKAlexanderMD)
Correspondenceto:ProfHaipengXiao,DepartmentofEndocrinology,TheFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou510080,
China
xiaohp@
or
ProfWeiWang,DepartmentofMedicalUltrasonics,InstituteofDiagnosticandInterventionalUltrasound,TheFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou510080,
China
wangw73@
or
ProfErikKAlexander,ThyroidSection,Brigham&Women’sHospital,HarvardMedicalSchool,Boston,MA02115,USA
ekalexander@
studieshavefocusedonacomparisonofthediagnosticperformanceofAIwithcliniciansinthyroidnoduledifferentiation.9–11Inourpreliminarystudy,amachinelearningsystemshowedabetterpredictivevalueformalignantthyroidnodulescomparedwithhumansusingAmericanCollegeofRheumatology(ACR)ThyroidImagingReportingandDataSystem(TIRADS).7Theintroductionofdeeplearninginthyroidimaginghasalsoachievedabetterdiagnosticperformancethanexperiencedradiologists.12,13Previousstudiesapplyingdeeplearningalgorithmshavemainlyfocusedonthecomparisonofradiologistsanddeeplearningmodelsbyreadingultrasoundimages.However,inarealworldsetting,thefinaldiagnosisshouldstillbemadebyradiologists.Therefore,evaluatingthediagnosticimprovementsprovidedbythecooperationbetweenradiologistsandAIsystemsismoresimilartotheclinicalsetting.Radiologistscouldimproveperformancebyreadingdynamicvideosinsteadofstaticimagesonly,butwhetheranAIassistedmodelcanhelpradiologistsimprovediagnosticperformancebyprocessingbothimagesandvideosshouldbeinvestigated.Moreover,fewstudiesdiscussedtheinfluenceofAIonfineneedleaspirationorthyroidectomytreatmentadvicegivenbyhealthcareprofessionals,leavingthisissuestillvague.
WedevelopedadeeplearningAImodel(ThyNet)todifferentiatemalignanttumoursfrombenignthyroidnodules.WeinvestigatedwhetherradiologistscouldimprovetheirdiagnosticperformancewiththeassistanceoftheThyNetmodelwhenreadingultrasoundimagesandvideosandexploredthepotentialoftheThyNetassistedstrategytohelpradiologistsavoidunnecessaryfineneedleaspirations.
Methods
Studydesignanddatasets
Thiswasamulticentre,diagnosticstudythatusedultrasoundimagesetsfromsevenhospitalsinChina.Patientsaged18yearsoldorolderwiththyroidnodulesatleast3mmindiameteridentifiedwithultrasoundwhohadadefinitivebenignormalignantpathologicalresult(surgicalspecimenorfineneedleaspiration[BethesdacategoryIIorVI])wereeligibleforinclusioninthetrainingsetandtestingsets.Thepathologicaldiagnosesweremadebytwopathologists,oneofwhomhadmorethan8years’experience.Allimageswereintiallyincluded,butlowqualityultrasoundimages,suchassevereartifacts(eg,motionartifactsandspeedpropagationandrefractionartifacts)orlowimageresolution,wereexcludedafterscreening.
TheimagesofthetrainingsetwerecollectedfromtheFirstAffiliatedHospitalofSunYatsenUniversity,Guangzhou,ChinaandSunYatsenUniversityCancerCenter,Guangzhou,China(18049imagesof8339patients).FortestsetA,2185imagesof1424patientswiththyroidnoduleswereenrolledfromfourindependenthospitals(theFirstAffiliatedHospitalofGuangxiMedicalUniversity,Nanning,China;theFirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine,Guangzhou,China;theSixthAffiliatedHospitalofSunYatsenUniversity,Guangzhou,China;andtheGuangzhouArmyGeneralHospital,Guangzhou,China).FortestsetB,1754imagesof1048patientswiththyroidnoduleswereenrolledfromtheFirstAffiliatedHospitalofSunYatsenUniversity,andtheThirdAffiliatedHospitalofSunYatsenUniversity,Guangzhou,China.FortestsetC,366imagesof303patientswiththyroidnoduleswereenrolledfromtheFirstAffiliatedHospital
/digital-health
Vol3April2021
e
PAGE
252
e
PAGE
253
/digital-health
Vol3April2021
ofSunYatsenUniversity,SunYatsenUniversityCancerCenter,andtheFirstAffiliatedHospitalofGuangxiMedicalUniversity.
ThisstudywasapprovedbytheResearchEthicsCommitteeoftheFirstAffiliatedHospitalofSunYatsenUniversity.Informedconsentwaswaivedforretrospectivelycollectedultrasoundimages,whichwereannonymised.Writteninformedconsentwasobtainedfrompatientswhoseultrasoundimagesanddynamicvideoswereprospectivelycollected.
Outcomes
Theprimaryendpointofourstudywastheareaunderthereceiveroperatingcharacteristiccurve(AUROC)ofthyroidnodulediagnosis.Thesecondaryendpointsofourstudywereaccuracy,sensitivity,specificity,positivepredictivevalue,andnegativepredictivevalueofthyroidnodulediagnosis.TheposthocanalysisincludedthediagnosticaccuracyofThyNetindifferentpathologicalsubtypesandThyNetassistedfineneedleaspirationstrategy.
Procedures
Forthetrainingset,ultrasoundimagesofconsecutivepatientswiththyroidnoduleswereretrospectivelyretrievedfromtheindividualthyroidimagingdatabaseattheFirstAffiliatedHospitalofSunYatsenUniversityandSunYatsenUniversityCancerCenter,betweenJan1,2009,andNov30,2018.Atotalof19312imagesfrom8339patientswereincludedinthetrainingset,with1263imagesexcludedduetopoorimagequality.
Therewasnooverlapbetweenpatientsinthetrainingandtestsetsandtherewasnooverlapbetweenthethreetestsubset.ThetestsetimagesforthecomparisonbetweenThyNetandradiologists(testsetA)andtheassessmentoftheThyNetassistedstrategy(testsetB)wereretrospectivelyobtainedfromsixindependenthospitals(theFirstAffiliatedHospitalofGuangxiMedicalUniversity,theFirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine,theSixthAffiliatedHospitalofSunYatsenUniversity,theGuangzhouArmyGeneralHospital,FirstAffiliatedHospitalofSunYatsenUniversity,andtheThirdAffiliatedHospitalofSunYatsenUniversity)betweenJan1,2009,andJuly30,2019.Intheclinicalsettingtest(testsetC),bothimagesanddynamicvideosofnoduleswereprospectivelycollectedfrominpatientsattheFirstAffiliatedHospitalofSunYatsenUniversity,SunYatsenUniversityCancerCenter,andFirstAffiliatedHospitalofGuangxiMedicalUniversityfromOct1toNov30,2019(appendixp4).Atotalof6587patientsinthetrainingsetand1956patientsinthetestsetswereconfirmedashavingadefinitivebenignormalignantpathologicalresultbasedonasurgicalspecimen.1752patientsinthetrainingsetand819patientsinthetestsetswereconfirmedashavingadefinitivebenignormalignantpathologicalresultbasedonfineneedleaspiration(BethesdacategoryIIorVI).
AllthyroidultrasoundimagesextractedfromthethyroidimagingdatabasewereconvertedintoaJPEGformat.Variousmodelsofultrasoundequipmentproducedby13differentmanufacturers(GEHealthcare,Chicago,IL,USA;Philips,Amsterdam,theNetherlands;Siemens,Munich,Germany;Canon,Tokyo,Japan;Samsung,Seoul,SouthKorea;Esaote,Genoa,Italy;Mindray,Huntingdon,UK;SonoScape,Shenzhen,China;Aloka,Wallingford,CT,USA;BKMedical,Peabody,MA,USA;Supersonic,AixenProvence,France;Vinno,Suzhou,China;andHitachi,Tokyo,Japan)wereusedtogeneratetheultrasoundimages(appendixp8).Imagequalitycontrolwasdoneforthetrainingsetandtestsets.Forthequalitycontrolofultrasoundimages,allthyroidimageswerescreenedandlowqualityimagescontainingsevereartifactsorsignificantimageresolutionreductionswereremoved.Thescreeningfortheimageswasdonebytworadiologists(HanXandZL)whohadatleast1yearofultrasoundexperience.Iftherewasnoconsensusregardingnodulelocationbetweentheimageandthepathologicalreport,theimagewasremoved.2345imagesfrom1424patientsintestsetAforthecomparisonbetweenThyNetandradiologistsmetthecriteria,with160imagesexcluded.1896imagesfrom1048patientsmettheinclusioncriteriaandwereusedintheassessmentoftheThyNetassisteddiagnosticstrategy,with142imagesexcludedafterimagequalitycontrol(testsetB).401imagesfrom303patientsintestsetCmettheinclusioncriteriaandwereusedintheassessmentoftheThyNetassisteddiagnosticstrategyinarealworldsetting,with35imagesexcludedafterimagequalitycontrol.Alldataweredeidentified(includingretrospectivleycollecteddataforthetrainingsets)beforethedevelopmentandevaluationofthemodel.
TheThyNetdeeplearningalgorithmwasspecificallydesignedtodiagnosemalignancyfromthyroidultrasoundimages.Itisacombinedarchitectureofthreenetworks:ResNet,ResNeXt,andDenseNet(appendixp5).ResNetusesresiduallearningblockstoreducetheeffectofgradientvanishing.ResNeXtisamodifiedversionofResNet,developedbyrepeatingabuildingblockthataggregatesasetoftransformationswiththesametopology.ResNeXtadditionallyintroducedtheconceptofsparsityandgroupconvolutiontoenhancetheabilityoftheAItolearnthesemanticinformationwithlessparameters.DenseNetisanewnetworkarchitecturethatconnectseachlayertoeveryotherlayerinafeedforwardfashion.14DenseNetmakesthenetworkdeeperbutreducesthenumberofparametersandpreventsoverfitting.Thethreebranchesofnetworksweretrainedseparatelyonthesametrainingsetandassembledthroughamajorityvotealgorithm.Tosearchfortheoptimalweightsforeachnetworkbranchandgettheensembledoutput,weusedthebruteforcesearchmethodviacrosstestinthetrainingsets.Thefinalweightingratiosare0·40forResNet,0·35forResNeXt,and0·25forDenseNet.
SeeOnlineforappendix
Trainingset
Testingsets
RadiologistsvsThyNet RadiologistsassistedbyThyNet
Prospectivecohortinclinicalpractice
1st
2nd
1st
2nd Final
vs
DeeplearningbasedThyNet
18049images
5122malignantand3217benignpathologicallyprovennodules
12radiologistsread
2185images
12radiologistsread1754imageswithThyNetassistance
12radiologistsread366imagesandvideoswithThyNetassistance
Figure1:Studyprofile
Usingdatasetsfromtwocentres,ThyNetwastrainedtodifferentiatethyroidnodules.ThyNetwasthentestedonthreedatasetswithnooverlap(testsetsA–C).
First,diagnosticperformancebetweenradiologistsandThyNetbasedonstaticimageswascompared.Second,diagnosticperformanceofradiologistsbefore
(firstdiagnosis)andafter(seconddiagnosis)theassistancebyThyNetwasassessedbasedonstaticimages.Third,thefirstdiagnosisbasedonstaticimagesandtheseconddiagnosisbasedondynamicvideoswasrecorded.Then,withtheassistanceofThyNet,thefinaldiagnosiswasobtainedandcomparedwiththeindependentdiagnosesmadebyradiologistswithoutThyNet.
Formoreontheratingplatform
see
Thenoiseinformation(eg,paramatersoftheultrasounddevice),whichwasdistributedmainlyintheperipheralareasoftheoriginalimages,wasmanuallyremovedbyoneradiologist(HH).Theimageswereresizedto256×256pixelsbeforebeingcroppedto224×224pixels.Standardimagepreprocessing(clipping,flipping,androtating)fordeeplearningtogeneratealarger,morecomplicatedanddiversedatasettoimproveaccuracyandgeneralisabilitywasthendone.Augmentationwasdoneindependentlybeforeeachepochwitharandomlyselectedalgorithmofthethreeaugmentationalgorithms.Ourmodeltooktheaugmentedimages(byoneaugmentationalgorithmforeachepoch;input)andcalculatedtheprobabilityofeachimagebeingamalignantdiagnosis(output)aftertrainingacertainnumberofepochs(appendixp6).
Weusedtheweightsofeachnetwork,pretrainedonImageNet,astheinitialisationofourmodel’sweights.Thesametrainingparameterswereappliedtoeachnetworkbranch.Stochasticgradientdescentandcrossentropylosswereusedfornetworkweighttuningandalgorithmoptimisation.Theinitiallearningratewas0·01,whichdecreasedbyonetenthevery100epochs;thefinallearningratewas0·0001.Topreventoverfitting,batchnormalisationwasusedandtheweightdecayratewassetto0·0005.Weusedabatchsizeof128imagesandaRectifiedLinearUnitactivationfunction.Heatmapsweregeneratedbythegradcammethods.
12radiologists,includingsixjuniorradiologists(1–3yearsofexperience)andsixseniorradiologists(>8yearsofexperience),reviewedthetworetrospectivedatasetsandtheprospectivedataset.Radiologistsweremaskedtothepathologicalconfirmationofthenodulestatusandresearchaimsbeforethereviewingprocess.Theindependentreviewprocesswasmadeonawebbasedrating
platform
.ThereviewofeachlesionincludedassigningpointsbasedontheACRTIRADS15categories(composition,echogenicity,shape,margin,andechogenicfoci)anddeterminingamalignantorbenigndiagnosis(appendixpp17–24).
ThyNetwastestedinthreestages(figure1).First,thediagnosticperformanceofThyNetwascomparedwithradiologists(withtestsetA);second,improvementinthediagnosticperformanceofradiologistswhenassistedbyThyNetwasevaluated(withtestsetB);andthird,theapplicationofThyNetinactualclinicalpracticewasinvestigated(withtestsetC).
Forthefirststage,ultrasoundimagesfromfourindependenthospitalswereusedtocomparetheperformanceofThyNetwithradiologists.Radiologistswereinvitedtoreviewtheimagesandmakediagnosesindependently.Areviewprocesswasmadeonawebbasedratingplatform,whichintegratedthedataofallvalidationdatasets.ThereviewofeachlesionincludedthefollowingassigningpointsbasedonfiveACRTIRADS18categories(composition,echogenicity,shape,margin,andechogenicfoci)anddeterminingamalignantorbenigndiagnosis.Alldataweredeidentifiedbeforetransfertotheinvestigators,andtheradiologistswerealsomaskedtothepathologicalreports.TheradiologistswereinformedoftheirdiagnosticperformancecomparedwithThyNetbeforethedeeplearningsystemwasusedtoaidtheirdiagnosis.
RadiologistsintwohospitalsusedThyNettoaidthediagnosticprocess.Initialindependentreviewanddiagnosisweremadebyradiologistsalone.TheradiologistdiagnosiswascomparedwithareferencediagnosisfromThyNet.Ifthetwodidnotmatch,theradiologistscouldthenchoosetoadheretotheirdiagnosisoradoptthediagnosisfromThyNetasthefinaldiagnosis.Boththeinitialandfinalassisteddiagnosiswererecorded.
ThyNetwastestedinarealworldclinicalsettinginthreehospitals.Initialindependentreviewanddiagnosisweremadeby12radiologistsreviewingstaticimagesandaseconddiagnosiswasobtainedbasedondynamicvideosofthenodule.The12radiologistswerethesameindividualsthatassessedtheimagesintestsetsAandB.ThefinaldiagnosiswasmadeaftertheThyNetassistedreferencediagnosis.Thethreeindependentdiagnostic
recordsofinitial,second,andfinaldiagnosisforeachradiologistwererecorded.
Inclinicalpracticeofthyroidnodulemanagement,acrucialdecisionfollowingACRTIRADSscoringis
whethersubsequentfineneedleaspirationisindicated.AccordingtoACRTIRADS,nodulesthatscore2pointsorlessdonotneedfineneedleaspiration,inwhichcasetheprobabilityofbeingbenign(negativepredictive
Sensitivity
1·00
Seniorradiologists
0·95withAIassistanceJuniorradiologistwithAIassistance
0·90
Seniorradiologist
0·85
0·80
0·75
Juniorradiologist
Radiologists
withAIassistance
0·95Juniorradiologist
1·00SeniorradiologistwithAIassistance
Seniorradiologist
withAIassistance withdynamicvideos
Seniorradiologist
0·90
withstaticimages
Juniorradiologist
0·85
0·80
0·75
Juniorradiologistwithdynamicvideoswithstaticimages
InitialdiagnosiswithimageSeconddiagnosiswithvideoFinaldiagnosiswithAI
A
B
PooledAUROC=0·922 Individualradiologists
GXMUAUROC=0·922 SeniorradiologistsAUROC=0·857
GUCMAUROC=0·928 JuniorradiologistsAUROC=0·821
SYSU06AUROC=0·924 AllradiologistsAUROC=0·839
GAGHAUROC=0·921
1·0
0·8
0·6
0·4
0·2
0·95
0·90
0·85
0·80
0·75
0·70
0·0
C D
SeniorradiologistsAUROC=0·855 SeniorradiologistswithstaticimagesAUROC=0·837
SeniorradiologistswithAIassistanceAUROC=0·885 SeniorradiologistswithdynamicvideosAUROC=0·871
JuniorradiologistsAUROC=0·819 SeniorradiologistswithradiologistsAIassistanceAUROC=0·881
JuniorwithAIassistanceAUROC=0·866 JuniorradiologistswithstaticimagesAUROC=0·809JuniorradiologistswithdynamicvideosAUROC=0·853JuniorradiologistswithAIassistanceAUROC=0·866
1·0
0·8
0·6
0·4
0·2
0·0
1·0
0·8
0·6
0·4
0·2
01·0
0·8
0·6
0·4
0·2
0
Specificity Specificity
1·00
0·95
0·90
0·85
0·80
0·75
0·70
Sensitivity
Figure2:DiagnosticperformanceofThyNetandradiologistsinserialtestfordiscriminationofmalignantfrombenignthyroidnodules
AUROCstoevaluatediagnosticperformanceofThyNetinthetotaltestsetandeachexternalinstitutioninthefirsttestcomparingThyNetwithradiologists.
DiagnosticperformanceofThyNetcomparedwitheachradiologistinthetotaltestset.Rounddotsindicatediagnosticsensitivitiesandspecificitiesofindividualradiologists,thetriangleindicatesthepooledsensitivitiesandspecificitiesofalljuniorradiologists,thestarindicatesthepooledsensitivitiesandspecificitiesofallseniorradiologists,andthesquareindicatespooledsensitivitiesandspecificitiesofallradiologists.(C)DiagnosticperformanceofradiologistsaloneandradiologistsassistedbyThyNet.Rounddotsindicatesensitivitiesandspecificitiesofthefirstdiagnosis,andthesquaresindicatesensitivitiesandspecificitiesofseconddiagnosiswithThyNetassistance.(D)DiagnosticperformanceofradiologistsassistedbyThyNetinaclinicalsetting.Rounddotsindicatesensitivitiesandspecificitiesofthefirstdiagnosisbasedonstaticimages,trianglesindicatetheseconddiagnosisbasedondynamicvideos,andthesquaresindicatefinaldiagnosisofradiologistwithThyNetassistance.AI=artificialintelligence.AUROC=areaunderthereceiveroperatingcharacteristiccurve.GAGH=theGuangzhouArmyGeneralHospital.GUCM=theFirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine.GXMU=theFirstAffiliatedHospitalofGuangxiMedicalUniversity.ROC=receiveroperatingcharacteristiccurve.SYSU06=theSixthAffiliatedHospitalofSunYat-senUniversity.
AUROC(95%CI)
pvalue
Accuracy(95%CI)
p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法律原理考试题及答案
- 法律文书写作试题及答案
- 逻辑推理能力的系统训练试题及答案
- 法律面试题框架及答案
- 法律课试题及答案
- 计算机一级Msoffice新考点试题及答案
- 2025年计算机二级Python考试内容梳理及试题及答案
- 2025年建筑工程合同管理与房地产开发合同研究
- 突破自我的文学概论试题及答案
- 医保政策课件
- 舜宇校招面试题目及答案
- 2025年纺羊绒纱项目可行性研究报告
- 中国重症患者肠外营养治疗临床实践专家共识(2024)解读
- 【MOOC答案】《大学篮球(四)》(华中科技大学)章节作业期末慕课答案
- 2025年FRM金融风险管理师考试专业试卷(真题)预测与解析
- 2026届新高考地理精准复习:海气相互作用
- 吉林省长春市2025届高三质量监测(四)英语试卷+答案
- 图像分割与目标检测结合的医学影像分析框架-洞察阐释
- 2024年新疆泽普县事业单位公开招聘村务工作者笔试题带答案
- 《网络素养教育》课件
- 2025年大数据分析师职业技能测试卷:数据采集与处理流程试题解析
评论
0/150
提交评论