湖北省武汉市江汉区重点中学2024年初中数学毕业考试模拟冲刺卷含解析_第1页
湖北省武汉市江汉区重点中学2024年初中数学毕业考试模拟冲刺卷含解析_第2页
湖北省武汉市江汉区重点中学2024年初中数学毕业考试模拟冲刺卷含解析_第3页
湖北省武汉市江汉区重点中学2024年初中数学毕业考试模拟冲刺卷含解析_第4页
湖北省武汉市江汉区重点中学2024年初中数学毕业考试模拟冲刺卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市江汉区重点中学2024年初中数学毕业考试模拟冲刺卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.下列计算正确的是()A.a2+a2=a4 B.a5•a2=a7 C.(a2)3=a5 D.2a2﹣a2=22.将直线y=﹣x+a的图象向右平移2个单位后经过点A(3,3),则a的值为()A.4B.﹣4C.2D.﹣23.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.4.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1 B.y2 C.y3 D.y45.的绝对值是()A. B. C. D.6.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是A.有两个相等的实数根 B.有两个异号的实数根C.有两个不相等的实数根 D.没有实数根7.下列性质中菱形不一定具有的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.既是轴对称图形又是中心对称图形8.已知某几何体的三视图(单位:cm)如图所示,则该几何体的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm29.如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y= B.y= C.y= D.y=﹣10.下列图形中,是正方体表面展开图的是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:x3-9x12.分解因式:4ax2-ay2=________________.13.若+(y﹣2018)2=0,则x﹣2+y0=_____.14.不等式组的解集为,则的取值范围为_____.15.反比例函数的图象经过点(﹣3,2),则k的值是_____.当x大于0时,y随x的增大而_____.(填增大或减小)16.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则DEEF的值为三、解答题(共8题,共72分)17.(8分)(1)观察猜想如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为______;(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.18.(8分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:(1)本次被调查的学生的人数为;(2)补全条形统计图(3)扇形统计图中,类所在扇形的圆心角的度数为;(4)若该中学有2000名学生,请估计该校最喜爱两类校本课程的学生约共有多少名.19.(8分)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.20.(8分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?21.(8分)解不等式组:,并将它的解集在数轴上表示出来.22.(10分)如图,已知点E,F分别是▱ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CF∥AE.23.(12分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)24.某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】

根据整式的加减乘除乘方运算法则逐一运算即可。【详解】A.,故A选项错误。B.,故B选项正确。C.,故C选项错误。D.,故D选项错误。故答案选B.【点睛】本题考查整式加减乘除运算法则,只需熟记法则与公式即可。2、A【解析】

直接根据“左加右减”的原则求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【详解】由“右加左减”的原则可知,将直线y=-x+b向右平移2个单位所得直线的解析式为:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故选A.【点睛】本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b向左平移m个单位,是y=k(x+m)+b,向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;②y=kx+b向上平移n个单位,是y=kx+b+n,向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.3、C【解析】

连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.4、A【解析】

由图象的点的坐标,根据待定系数法求得解析式即可判定.【详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y1故选A.【点睛】本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.5、C【解析】

根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.【详解】在数轴上,点到原点的距离是,所以,的绝对值是,故选C.【点睛】错因分析

容易题,失分原因:未掌握绝对值的概念.6、A【解析】

根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.7、C【解析】

根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.【详解】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C.考点:菱形的性质8、B【解析】由三视图可知这个几何体是圆锥,高是4cm,底面半径是3cm,所以母线长是(cm),∴侧面积=π×3×5=15π(cm2),故选B.9、C【解析】

由双曲线中k的几何意义可知据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.【详解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故选C.【点睛】本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;10、C【解析】

利用正方体及其表面展开图的特点解题.【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.二、填空题(本大题共6个小题,每小题3分,共18分)11、x【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,先提取公因式x后继续应用平方差公式分解即可:x212、a(2x+y)(2x-y)【解析】

首先提取公因式a,再利用平方差进行分解即可.【详解】原式=a(4x2-y2)

=a(2x+y)(2x-y),

故答案为a(2x+y)(2x-y).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13、1【解析】

直接利用偶次方的性质以及二次根式的性质分别化简得出答案.【详解】解:∵+(y﹣1018)1=0,∴x﹣1=0,y﹣1018=0,解得:x=1,y=1018,则x﹣1+y0=1﹣1+10180=1+1=1.故答案为:1.【点睛】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.14、k≥1【解析】解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.故答案为k≥1.15、﹣6增大【解析】

∵反比例函数的图象经过点(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,则y随x的增大而增大.故答案为﹣6;增大.【点睛】本题考查用待定系数法求反函数解析式与反比例函数的性质:(1)当k>0时,函数图象在一,三象限,在每个象限内,y随x的增大而减小;(2)当k<0时,函数图象在二,四象限,在每个象限内,y随x的增大而增大.16、3【解析】试题解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴DE考点:平行线分线段成比例.三、解答题(共8题,共72分)17、(1)BC=BD+CE,(2);(3).【解析】

(1)证明△ADB≌△EAC,根据全等三角形的性质得到BD=AC,EC=AB,即可得到BC、BD、CE之间的数量关系;(2)过D作DE⊥AB,交BA的延长线于E,证明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根据勾股定理即可得到BD的长;(3)过D作DE⊥BC于E,作DF⊥AB于F,证明△CED≌△AFD,根据全等三角形的性质得到CE=AF,ED=DF,设AF=x,DF=y,根据CB=4,AB=2,列出方程组,求出的值,根据勾股定理即可求出BD的长.【详解】解:(1)观察猜想结论:BC=BD+CE,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,设AF=x,DF=y,则,解得:∴BF=2+1=3,DF=3,由勾股定理得:【点睛】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.18、(1)300;(2)见解析;(3)108°;(4)约有840名.【解析】

(1)根据A种类人数及其占总人数百分比可得答案;

(2)用总人数乘以B的百分比得出其人数,即可补全条形图;

(3)用360°乘以C类人数占总人数的比例可得;

(4)总人数乘以C、D两类人数占样本的比例可得答案.【详解】解:(1)本次被调查的学生的人数为69÷23%=300(人),

故答案为:300;

(2)喜欢B类校本课程的人数为300×20%=60(人),

补全条形图如下:

(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×=108°,

故答案为:108°;

(4)∵2000×=840,

∴估计该校喜爱C,D两类校本课程的学生共有840名.【点睛】本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.19、(1)y=-x2-2x+1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(-2,6)(2)存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为(,2)或(,2)或(,2)或(,2)【解析】解:(1)∵直线y=x+1与x轴、y轴分别交于A、B两点,∴A(-1,0),B(0,1).∵抛物线y=-x2+bx+c经过A、B两点,∴,解得.∴抛物线解析式为y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如图1,设D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴当t=-2时,线段PE的长度有最大值1,此时P(-2,6).(2)存在.如图2,过N点作NH⊥x轴于点H.设OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴yQ=1-m.又M为OA中点,∴MH=2-m.当△MON为等腰三角形时:①若MN=ON,则H为底边OM的中点,∴m=1,∴yQ=1-m=2.由-xQ2-2xQ+1=2,解得.∴点Q坐标为(,2)或(,2).②若MN=OM=2,则在Rt△MNH中,根据勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,化简得m2-6m+8=0,解得:m1=2,m2=1(不合题意,舍去).∴yQ=2,由-xQ2-2xQ+1=2,解得.∴点Q坐标为(,2)或(,2).③若ON=OM=2,则在Rt△NOH中,根据勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,化简得m2-1m+6=0,∵△=-8<0,∴此时不存在这样的直线l,使得△MON为等腰三角形.综上所述,存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为(,2)或(,2)或(,2)或(,2).(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标.(2)求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值.(2)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标.“△MON是等腰三角形”,其中包含三种情况:MN=ON,MN=OM,ON=OM,逐一讨论求解.20、(1)50;4;5;画图见解析;(2)144°;(3)64【解析】

(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;

(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;

(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.【详解】解:(1)∵课外阅读达3小时的共10人,占总人数的20%,∴=50(人).∵课外阅读4小时的人数是32%,∴50×32%=16(人),∴男生人数=16﹣8=8(人);∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,∴中位数是4小时,众数是5小时.补全图形如图所示.故答案为50,4,5;(2)∵课外阅读5小时的人数是20人,∴×360°=144°.故答案为144°;(3)∵课外阅读6小时的人数是4人,∴800×=64(人).答:九年级一周课外阅读时间为6小时的学生大约有64人.【点睛】本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.21、-1≤x<4,在数轴上表示见解析.【解析】试题分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:,由①得,x<4;由②得,x⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:22、证明见解析【解析】

根据平行四边形性质推出AB=CD,AB∥CD,得出∠EBA=∠FDC,根据SAS证两三角形全等即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠EBA=∠FDC,∵DE=BF,∴BE=DF,∵在△ABE和△CDF中,∴△ABE≌△CDF(SAS),∴AE=CF,∠E=∠F,∴AE∥CF.【点睛】本题考查了平行四边形的性质和全等三角形的判定的应用,解题的关键是准确寻找全等三角形解决问题.23、2.1.【解析】

据题意得出tanB=,即可得出tanA,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF=1x的长.【详解】解:据题意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论