




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页10天刷完高考真题(新高考ⅠⅡ卷2021-2023)-冲刺2024年高考数学考前必刷题(新高考通用)新高考真题限时训练打卡第三天Ⅱ真题限时训练新高考真题限时训练打卡第三天难度:一般建议用时:60分钟一、单选题1.(2022·全国·统考高考真题)若集合,则(
)A. B. C. D.【答案】D【分析】求出集合后可求.【详解】,故,故选:D2.(2023·全国·统考高考真题)在复平面内,对应的点位于(
).A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】A【分析】根据复数的乘法结合复数的几何意义分析判断.【详解】因为,则所求复数对应的点为,位于第一象限.故选:A.3.(2022·全国·统考高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有(
)A.12种 B.24种 C.36种 D.48种【答案】B【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:种不同的排列方式,故选:B4.(2023·全国·统考高考真题)设函数在区间上单调递减,则的取值范围是(
)A. B.C. D.【答案】D【分析】利用指数型复合函数单调性,判断列式计算作答.【详解】函数在R上单调递增,而函数在区间上单调递减,则有函数在区间上单调递减,因此,解得,所以的取值范围是.故选:D5.(2023·全国·统考高考真题)记为数列的前项和,设甲:为等差数列;乙:为等差数列,则(
)A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n项和与第n项的关系推理判断作答.,【详解】方法1,甲:为等差数列,设其首项为,公差为,则,因此为等差数列,则甲是乙的充分条件;反之,乙:为等差数列,即为常数,设为,即,则,有,两式相减得:,即,对也成立,因此为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C正确.方法2,甲:为等差数列,设数列的首项,公差为,即,则,因此为等差数列,即甲是乙的充分条件;反之,乙:为等差数列,即,即,,当时,上两式相减得:,当时,上式成立,于是,又为常数,因此为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.故选:C6.(2023·全国·统考高考真题)已知,则(
).A. B. C. D.【答案】B【分析】根据给定条件,利用和角、差角的正弦公式求出,再利用二倍角的余弦公式计算作答.【详解】因为,而,因此,则,所以.故选:B【点睛】方法点睛:三角函数求值的类型及方法(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.二、多选题7.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则(
).A.该圆锥的体积为 B.该圆锥的侧面积为C. D.的面积为【答案】AC【分析】根据圆锥的体积、侧面积判断A、B选项的正确性,利用二面角的知识判断C、D选项的正确性.【详解】依题意,,,所以,A选项,圆锥的体积为,A选项正确;B选项,圆锥的侧面积为,B选项错误;C选项,设是的中点,连接,则,所以是二面角的平面角,则,所以,故,则,C选项正确;D选项,,所以,D选项错误.故选:AC.
8.(2023·全国·统考高考真题)已知函数的定义域为,,则(
).A. B.C.是偶函数 D.为的极小值点【答案】ABC【分析】方法一:利用赋值法,结合函数奇偶性的判断方法可判断选项ABC,举反例即可排除选项D.方法二:选项ABC的判断与方法一同,对于D,可构造特殊函数进行判断即可.【详解】方法一:因为,对于A,令,,故正确.对于B,令,,则,故B正确.对于C,令,,则,令,又函数的定义域为,所以为偶函数,故正确,对于D,不妨令,显然符合题设条件,此时无极值,故错误.方法二:因为,对于A,令,,故正确.对于B,令,,则,故B正确.对于C,令,,则,令,又函数的定义域为,所以为偶函数,故正确,对于D,当时,对两边同时除以,得到,故可以设,则,当肘,,则,令,得;令,得;故在上单调递减,在上单调递增,因为为偶函数,所以在上单调递增,在上单调递减,
显然,此时是的极大值,故D错误.故选:.三、填空题9.(2023·全国·统考高考真题)已知向量,满足,,则.【答案】【分析】法一:根据题意结合向量数量积的运算律运算求解;法二:换元令,结合数量积的运算律运算求解.【详解】法一:因为,即,则,整理得,又因为,即,则,所以.法二:设,则,由题意可得:,则,整理得:,即.故答案为:.10.(2023·全国·统考高考真题)已知双曲线的左、右焦点分别为.点在上,点在轴上,,则的离心率为.【答案】【分析】方法一:利用双曲线的定义与向量数积的几何意义得到关于的表达式,从而利用勾股定理求得,进而利用余弦定理得到的齐次方程,从而得解.方法二:依题意设出各点坐标,从而由向量坐标运算求得,,将点代入双曲线得到关于的齐次方程,从而得解;【详解】方法一:依题意,设,则,在中,,则,故或(舍去),所以,,则,故,所以在中,,整理得,故.方法二:依题意,得,令,因为,所以,则,又,所以,则,又点在上,则,整理得,则,所以,即,整理得,则,解得或,又,所以或(舍去),故.故答案为:.【点睛】关键点睛:双曲线过焦点的三角形的解决关键是充分利用双曲线的定义,结合勾股定理与余弦定理得到关于的齐次方程,从而得解.四、解答题11.(2023·全国·统考高考真题)记的内角的对边分别为,已知的面积为,为中点,且.(1)若,求;(2)若,求.【答案】(1);(2).【分析】(1)方法1,利用三角形面积公式求出,再利用余弦定理求解作答;方法2,利用三角形面积公式求出,作出边上的高,利用直角三角形求解作答.(2)方法1,利用余弦定理求出a,再利用三角形面积公式求出即可求解作答;方法2,利用向量运算律建立关系求出a,再利用三角形面积公式求出即可求解作答.【详解】(1)方法1:在中,因为为中点,,,
则,解得,在中,,由余弦定理得,即,解得,则,,所以.方法2:在中,因为为中点,,,则,解得,在中,由余弦定理得,即,解得,有,则,,过作于,于是,,所以.(2)方法1:在与中,由余弦定理得,整理得,而,则,又,解得,而,于是,所以.方法2:在中,因为为中点,则,又,于是,即,解得,又,解得,而,于是,所以.12.(2023·全国·统考高考真题)如图,在正四棱柱中,.点分别在棱,上,.
(1)证明:;(2)点在棱上,当二面角为时,求.【答案】(1)证明见解析;(2)1【分析】(1)建立空间直角坐标系,利用向量坐标相等证明;(2)设,利用向量法求二面角,建立方程求出即可得解.【详解】(1)以为坐标原点,所在直线为轴建立空间直角坐标系,如图,
则,,,又不在同一条直线上,.(2)设,则,设平面的法向量,则,令,得,,设平面的法向量,则,令,得,,,化简可得,,解得或,或,.13.(2023·全国·统考高考真题)(1)证明:当时,;(2)已知函数,若是的极大值点,求a的取值范围.【答案】(1)证明见详解(2)【分析】(1)分别构建,,求导,利用导数判断原函数的单调性,进而可得结果;(2)根据题意结合偶函数的性质可知只需要研究在上的单调性,求导,分类讨论和,结合(1)中的结论放缩,根据极大值的定义分析求解.【详解】(1)构建,则对恒成立,则在上单调递增,可得,所以;构建,则,构建,则对恒成立,则在上单调递增,可得,即对恒成立,则在上单调递增,可得,所以;综上所述:.(2)令,解得,即函数的定义域为,若,则,因为在定义域内单调递减,在上单调递增,在上单调递减,则在上单调递减,在上单调递增,故是的极小值点,不合题意,所以.当时,令因为,且,所以函数在定义域内为偶函数,由题意可得:,(i)当时,取,,则,由(1)可得,且,所以,即当时,,则在上单调递增,结合偶函数的对称性可知:在上单调递减,所以是的极小值点,不合题意;(ⅱ)当时,取,则,由(1)可得,构建,则,且,则对恒成立,可知在上单调递增,且,所以在内存在唯一的零点,当时,则,且,则,即当时,,则在上单调递减,结合偶函数的对称性可知:在上单调递增,所以是的极大值点,符合题意;综上所述:,即,解得或,故a的取值范围为.【点睛】关键点睛:1.当时,利用,换元放缩;2.当时,利用,换元放缩.Ⅲ精选模拟题预测一、单选题1.已知全集,集合,则图中阴影部分所表示的集合是(
)
A. B. C. D.【答案】C【分析】由图确定阴影部分所表示的集合为,再根据集合的补集以及交集的运算,即可得答案.【详解】由图可知图中阴影部分所表示的集合为,由于全集,集合,故,则,故选:C2.若,则(
)A. B.1 C. D.2【答案】B【分析】运用复数的运算求出,再利用复数模的公式即可求解.【详解】由题,,.故选:B.3.体育课上,老师让2名女生和3名男生排成一排,要求2名女生之间至少有1名男生,则这5名学生不同的排法共有(
)A.24种 B.36种 C.72种 D.96种【答案】C【分析】利用间接法,先让5名学生排成一排,再让2名女生相邻,即可得结果.【详解】让2名女生和3名男生排成一排,不同的排法共有种,让2名女生相邻,不同的排法共有种,所以符合题设的不同的排法共有种.故选:C.4.已知函数在R上单调递增,则实数a的取值范围是(
)A. B. C. D.【答案】A【分析】利用分段函数的单调性列出不等式组即可求参数的取值范围.【详解】因为函数在R上单调递增.所以,解得,即实数a的取值范围是.故选:A.5.已知数列是公差为的等差数列,是其前项和,且,,则()A. B. C. D.【答案】C【分析】利用等差数列的基本性质可得出,结合以及等差数列的通项公式可判断AB选项,利用等差数列的求和公式可判断C选项,推导出,结合数列的单调性可判断D选项.【详解】因为数列是公差为的等差数列,是其前项和,且,,则,所以,,所以,,A对;,则,B错;,C对;因为,则,又因为,所以,数列是单调递增数列,当时,;当时,.综上所述,,D错.故选:C.6.如图,在函数的部分图象中,若,则点的纵坐标为(
)
A. B. C. D.【答案】B【分析】由题意首先得,进一步得由得,将它们代入函数表达式结合诱导公式二倍角公式即可求解.【详解】由题意,则,所以,设,因为,所以,解得,所以,所以,又由图可知,所以.故选:B.二、多选题7.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球的半径为,,,为球面上三点,劣弧的弧长记为,设表示以为圆心,且过,的圆,同理,圆,的劣弧,的弧长分别记为,,曲面(阴影部分)叫做曲面三角形,若,则称其为曲面等边三角形,线段,,与曲面围成的封闭几何体叫做球面三棱锥,记为球面.设,,,则下列结论正确的是(
)A.若平面是面积为的等边三角形,则B.若,则C.若,则球面的体积D.若平面为直角三角形,且,则【答案】BC【分析】根据弧长公式即可求解A,根据勾股定理以及弧长公式即可求解B,根据球的截面性质可得求解C,根据余弦定理,取反例即可求解D.【详解】若平面是面积为的等边三角形,则,则,.A不正确.若,则,则.B正确.若,则,,则平面的外接圆半径为,则到平面的距离,则三棱锥的体积,则球面的体积.C正确.由余弦定理可知因为,所以,则.取,,则,,则.D不正确.故选:BC【点睛】方法点睛:解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.8.已知函数的定义域为,且,,则(
)A.B.为偶函数C.为周期函数,且4为的周期D.【答案】ACD【分析】对于选项A:令中,即可得出答案;对于选项B:令中,得出,根据已知得出其定义域关于轴对称,即可根据函数奇偶性的定义得出答案;对于选项C:令中,得出,即可根据周期定义得出答案;对于选项D:根据周期得出答案.【详解】A选项:令,得,故A正确.B选项:令,则,因此,又的定义域为,关于轴对称,所以为奇函数,故B错误.C选项:令,则,所以,因此,所以为周期函数,且周期为4,故C正确.D选项:,故D正确.故选:ACD.三、填空题9.已知单位向量满足,则.【答案】【分析】由,两边平方得,计算即可.【详解】单位向量,有,由,得,所以,则,故.故答案为:10.已知双曲线左右焦点分别为,点为右支上一动点,圆与的延长线、的延长线和线段都相切,则.【答案】1【分析】结合双曲线的定义,再结合直线与圆相切的性质,转化求得,再根据数量积的的公式,即可求解.【详解】如图,设圆与的延长线、的延长线和线段分别切于点,连接,则,由双曲线方程为,可得又为右支上的一动点,又由题意可知,又故答案为:1【点睛】关键点点睛:本题的关键是结合直线与圆相切的几何关系,进行线段长度的转化.四、解答题11.在中,内角的对边分别是,已知.(1)求;(2)若,求的面积.【答案】(1);(2)或.【分析】(1)根据给定条件,利用正弦定理边化角,再结合和角的正弦公式求解.(2)由(1)的结论,利用余弦定理及三角形面积公式计算即得.【详解】(1)在中,由,得,由正弦定理得,则,而,因此,又,所以.(2)由(1)及余弦定理得:,即,解得或,当时,,当时,,所以的面积为或.12.如图,在四棱锥中,四边形是菱形,平面平面,点在上,且.(1)求证:平面;(2)若,求平面与平面夹角的余弦值.【答案】(1)证明见解析(2)【分析】(1)由余弦定理结合勾股定理逆定理可得,后结合平面平面,可得,后结合可得结论;(2)由(1)结合题意建立如图所示的空间直角坐标系,分别求出平面与平面的法向量,即可得答案.【详解】(1)不妨设,,由余弦定理得,在中,,平面平面,平面平面平面,平面.平面,四边形是菱形,,又,且平面平面平面.(2)在平面内,过点作的垂线,垂足为,平面平面,平面平面,平面,又四边形是菱形,,均为等边三角形,以点A为坐标原点,及过点A平行于的直线分别为轴,建立空间直角坐标系(如图),则,由(1)平面,为平面的一个法向量,设平面的法向量为,则即.令,可得,,平面与平面的夹角的余弦值为.13.给出下列两个定义:I.对于函数,定义域为,且其在上是可导的,若其导函数定义域也为,则称该函数是“同定义函数”.II.对于一个“同定义函数”,若有以下性质:①;②,其中为两个新的函数,是的导函数.我们将具有其中一个性质的函数称之为“单向导函数”,将两个性质都具有的函数称之为“双向导函数”,将称之为“自导函数”.(1)判断函数和是“单向导函数”,或者“双向导函数”,说明理由.如果具有性质①,则写出其对应的“自导函数”;(2)已知命题是“双向导函数”且其“自导函数”为常值函数,命题.判断命题是的什么条件,证明你的结论;(3)已知函数.①若的“自导函数”是,试求的取值范围;②若,且定义,若对任意,不等式恒成立,求的取值范围.【答案】(1)答案见解析(2)既不充分也不必要条件;证明见解析(3)【分析】(1)由和,结合题设中函数的定义,即可得到答案;(2)由成立,得到,设,得出为“单向导函数”,再设,得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息系统监理师考试准备的时间规划试题及答案
- 公路路基处理技术试题及答案
- 公路工程中的劳务用工管理试题及答案
- 深度分析行政组织理论趋势试题及答案
- 学习路上的帮助三级数据库试题及答案
- 理解数据标准化在数据库中的必要性试题及答案
- 金属丝绳在隧道工程中的应用与创新考核试卷
- 嵌入式编程技能测试试题及答案
- 计算机租赁业务中的风险管理框架优化与实施案例考核试卷
- 行政组织的数字化转型与挑战试题及答案
- 田径运动会竞赛团体总分记录表
- 《中小学综合实践活动课程指导纲要》
- 公共资源交易中心政府采购业务流程图
- 建筑施工单位职业危害归类表
- 重庆市医疗服务价格-重庆市《医疗服务价格手册-》
- 《融媒体实务》教学课件(全)
- 2023年广西中考语文真题及参考答案
- 能源中国学习通课后章节答案期末考试题库2023年
- 初中数学一题多解
- 带电清除导地线悬挂异物标准化作业指导书
- 第八章运动过程中人体机能变化课件
评论
0/150
提交评论