版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省淄博市张桥中学高二数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数在(0,1)内有极小值,则(
)A.0<b<1
B.b<1
C.b>0
D.参考答案:A略2.以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)甲组
乙组
909
21587424
已知甲组数据的中位数为,乙组数据的平均数为,则的值分别为(
)A. B. C. D.参考答案:C3.将9个数排成如下图所示的数表,若每行的3个数按从左至右的顺序构成等差数列,每列的3个数按从上到下的顺序也构成等差数列,且表正中间一个数a22=2,则表中所有数之和为(A)512
(B)20
(C)18
(D)不确定的数参考答案:C略4.正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为()A.4π B.8π C.12π D.16π参考答案:B【考点】球的体积和表面积.【分析】根据正三棱柱的对称性,它的外接球的球心在上下底面中心连线段的中点.再由正三角形的性质和勾股定理,结合题中数据算出外接球半径,用球表面积公式即可算出该球的表面积.【解答】解:设三棱柱ABC﹣A′B′C′的上、下底面的中心分别为O、O′,根据图形的对称性,可得外接球的球心在线段OO′中点O1,∵OA=AB=1,OO1=AA′=1∴O1A=因此,正三棱柱的外接球半径R=,可得该球的表面积为S=4πR2=8π故选:B.5.已知函数f(x)=ax3﹣6x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(﹣∞,﹣4) B.(4,+∞) C.(﹣∞,﹣4) D.(4,+∞)参考答案:C【考点】函数零点的判定定理.【专题】函数思想;综合法;函数的性质及应用.【分析】分类讨论:当a≥0时,容易判断出不符合题意;当a<0时,求出函数的导数,利用导数和极值之间的关系转化为求极小值f()>0,解出即可.【解答】解:当a=0时,f(x)=﹣12x2+1=0,解得x=±,函数f(x)有两个零点,不符合题意,应舍去;当a>0时,令f′(x)=3ax2﹣12x=3ax(x﹣)=0,解得x=0或x=>0,列表如下:x(﹣∞,0)0(0,)(,+∞)f′(x)+0﹣0+f(x)单调递增极大值单调递减极小值单调递增∵x→﹣∞,f(x)→﹣∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.当a<0时,f′(x)=3ax2﹣12x=3ax(x﹣)=0,解得x=0或x=<0,列表如下:x(﹣∞,)(,0)0(0,+∞)f′(x)﹣0+0﹣f(x)单调递减极小值单调递增极大值单调递减而f(0)=1>0,x→+∞时,f(x)→﹣∞,∴存在x0>0,使得f(x0)=0,∵f(x)存在唯一的零点x0,且x0>0,∴极小值f()=a()3﹣6()2+1>0,化为a2>32,∵a<0,∴a<﹣4.综上可知:a的取值范围是(﹣∞,﹣4).故选:C.【点评】本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力和计算能力,属于难题.6.已知命题实数满足,其中;命题实数满足;则是的(
)(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件参考答案:A7.如图,正方体ABCD﹣A1B1C1D1的棱长为1,E为A1B1的中点,给出下列四个命题:①点E到平面ABC1D1的距离为;②直线BC与平面ABC1D1所称角为45°;③空间四边形ABCD1在该正方体六个面内射影面积的最小值为;④正方体的所有棱中,与AB,CC1均共面的棱共有5条,其中正确命题的个数是()A.1 B.2 C.3 D.4参考答案:C考点:棱柱的结构特征.专题:空间位置关系与距离;立体几何.分析:根据点E到平面ABC1D1的距离等于点1到平面ABC1D1的距离,判断①即可;直线BC与平面ABC1D1所称角为∠CB1C1,利用Rt△CB1C1求解即可;把空间四边形ABCD1在该正方体左右,前后上下的射影面积求解判断最小值即可,利用平行,相交得出正方体的所有棱中,与AB,CC1均共面的棱共有5条,其中有BB1,D1C1,DC,AA1,BC,解答:解:∵EB1∥平面ABC1D1,∴点E到平面ABC1D1的距离等于点B1到平面ABC1D1的距离,∴点E到平面ABC1D1的距离为;故①不正确;∵直线BC与平面ABC1D1所称角为∠CB1C1,∴在Rt△CB1C1中,∠CB1C1=45°,故②正确;∵空间四边形ABCD1在该正方体上下面的射影面积为1,空间四边形ABCD1在该正方体左右,前后的射影面积为;∴空间四边形ABCD1在该正方体六个面内射影面积的最小值为;故③正确;∵正方体的所有棱中,与AB,CC1均共面的棱共有5条,其中有BB1,D1C1,DC,AA1,BC,∴④正确,故选:C
点评:本题综合参考了正方体的几何性质,空间直线,平面的距离,夹角问题,化立体为平面求解,属于中档题,关键是仔细看图得出所求解的线段,夹角.8.平面外有两条直线和,如果和在平面内的射影分别是和,给出下列四个命题:①;②;③与相交与相交或重合;④与平行与平行或重合.其中不正确的命题个数是A.1B.2C.3D.4参考答案:D略9.如右图为一个几何体的三视图,其中俯视图为正三角形,A1B1=2,AA1=4,则该几何体的表面积为(
)A.6+
B.24+2
C.24+
D.32参考答案:B10.设函数,则不等式的解集是A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知定义在R上的函数满足:且,,则方程在区间上的所有实根之和为________参考答案:略12.已知圆(x﹣1)2+(y+1)2=16的一条直径恰好经过直线x﹣2y+3=0被圆所截弦的中点,则该直径所在直线的方程为
.参考答案:2x+y﹣1=0【考点】直线与圆的位置关系.【专题】综合题;方程思想;综合法;直线与圆.【分析】由题意求出圆心坐标(1,﹣1),再由弦的中点与圆心的连线与弦所在的直线垂直求出斜率,进而求出该直径所在的直线方程【解答】解:由题意知,已知圆的圆心坐标(1,﹣1)∵弦的中点与圆心的连线与弦所在的直线垂直得,且方程x﹣2y+3=0∴该直径所在的直线的斜率为:﹣2,∴该直线方程y+1=﹣2(x﹣1);即2x+y﹣1=0,故答案为:2x+y﹣1=0.【点评】本题考查了过弦中点的直径和弦所在的直线的位置关系,直线垂直和直线的斜率关系,进而求直线方程,属于中档题.13.下面给出的四个命题中:①以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为(x﹣1)2+y2=1;②点(1,2)关于直线L:X﹣Y+2=0对称的点的坐标为(0,3).③命题“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”;④命题:过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有2条.其中是真命题的有
(将你认为正确的序号都填上).参考答案:①②③【考点】命题的真假判断与应用.【专题】方程思想;转化思想;圆锥曲线的定义、性质与方程;简易逻辑.【分析】①以抛物线y2=4x的焦点(1,0)为圆心,且过坐标原点的圆的半径为1,可得原点方程,即可判断出正误;②设点(1,2)关于直线L:X﹣Y+2=0对称的点的坐标为(x,y),则,解得即可判断出正误.③利用命题的否定定义即可判断出正误;④这样的直线有3条,分别为x=0,y=1,y=x+1,即可判断出正误.【解答】解:①以抛物线y2=4x的焦点(1,0)为圆心,且过坐标原点的圆的方程为(x﹣1)2+y2=1,正确;②设点(1,2)关于直线L:X﹣Y+2=0对称的点的坐标为(x,y),则,解得,因此所求对称点为(0,3),正确.③命题“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”,正确;④命题:过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有3条,分别为x=0,y=1,y=x+1,因此不正确.其中是真命题的有①②③.故答案为:①②③.【点评】本题考查了圆锥曲线的判定方法、命题真假的判定方法,考查了推理能力与计算能力,属于中档题.
14.已知椭圆,则过点且被平分的弦所在直线的方程为
;参考答案:略15.命题“”的否定是:
参考答案:16.已知向量a和b的夹角为60°,|a|=3,|b|=4,则(2a–b)a等于________参考答案:12,略17.若空间四边形ABCD的两条对角线AC,BD的长分别是8,12,过AB的中点E且平行于BD,AC的截面四边形的周长为___▲_;参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(II)直线l的参数方程为(t为参数),α为直线l的倾斜角,l与C交于A,B两点,且|AB|=,求l的斜率.参考答案:【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)由x=ρcosθ,y=ρsinθ,ρ2=x2+y2,能求出C的极坐标方程.(Ⅱ)直线l的直角坐标方程为=0,圆心(﹣6,0)到直线l的距离d==,由此能求出l的斜率k.【解答】解:(Ⅰ)∵在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,x=ρcosθ,y=ρsinθ,ρ2=x2+y2,∴C的极坐标方程为ρ2+ρcosθ+11=0.(Ⅱ)∵直线l的参数方程为(t为参数),α为直线l的倾斜角,∴直线l的直角坐标方程为=0,∵l与C交于A,B两点,且|AB|=,∴圆心(﹣6,0)到直线l的距离d==,解得cosα=,当cosα=时,l的斜率k=tanα=2;当cosα=﹣时,l的斜率k=tanα=﹣2.19.(14分)在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差数列,a2,b2,a3+2成等比数列,数列{bn}的前n项和为Sn.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)若Sn+an>m对任意的正整数n恒成立,求常数m的取值范围.参考答案:20.已知椭圆C的中心在原点,焦点在x轴上,左、右焦点分别为F1、F2,且|F1F2|=2,点在椭圆C上.(1)求椭圆C的方程;(2)过F1的直线l与椭圆C相交于A、B两点,且△AF2B的面积为,求直线l的方程.参考答案:解(1)设椭圆的方程为+=1(a>b>0),由题意可得椭圆C两焦点坐标分别为F1(-1,0),F2(1,0).∴2a=+=+=4.∴a=2,又c=1,∴b2=4-1=3,故椭圆C的方程为+=1.(2)当直线l⊥x轴时,计算得到:A,B,S△AF2B=·|AB|·|F1F2|=×3×2=3,不符合题意.当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),由消去y得(3+4k2)x2+8k2x+4k2-12=0.显然Δ>0成立,设A(x1,y1),B(x2,y2),则x1+x2=-,x1·x2=.又|AB|=·=·=·=,圆F2的半径r==,所以S△AF2B=|AB|·r=··==,化简,得17k4+k2-18=0,即(k2-1)(17k2+18)=0,解得k=±1.所以y=±(x+1)略21.已知椭圆经过点,且右焦点.(1)求椭圆E的方程;(2)若直线与椭圆E交于A,B两点,当最大时,求直线l的方程.参考答案:(1);(2).【分析】(1)由右焦点F2(,0),得c,利用椭圆定义可求a,从而得解;(2)由直线与椭圆联立,利用弦长公式表示弦长,换元成二次函数求最值.【详解】解:(1)设椭圆的左焦点,则又,所以椭圆的方程为(2)由,设由,且.设,则,当,即时,有最大值,此时.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度美容院员工社会保险缴纳合同样本4篇
- 课题申报参考:面向2035年高等教育布局结构研究
- 民政局2025年离婚协议书起草与备案流程指导4篇
- 2025年度门头房屋租赁合同含租赁用途及经营方向限制4篇
- 河南省周口中英文学校高三上学期期中考试语文试题(含答案)
- 2025年度个人二手房交易反担保合同规范2篇
- 2025年度个人汽车货运风险分担合同范本
- 2025年度门禁监控设备生产与销售合同8篇
- 2025年度水电工程合同履约监管承包协议4篇
- 2025年度木结构建筑绿色施工与环保验收合同4篇
- 人口老龄化背景下居民养老金融资产配置影响因素研究
- 人教版初中英语单词大全七八九年级(带音标) mp3听力音频下载
- 2024项目部安全管理人员安全培训考试题及参考答案(模拟题)
- 《习近平法治思想概论(第二版)》 课件 2. 第二章 习近平法治思想的理论意义
- 诺和关怀俱乐部对外介绍
- 玩转数和形课件
- 保定市县级地图PPT可编辑矢量行政区划(河北省)
- 新苏教版科学六年级下册全册教案(含反思)
- 天然饮用山泉水项目投资规划建设方案
- 供方注册指南-ZTE
- 2019年重庆市中考物理试卷(a卷)及答案
评论
0/150
提交评论