




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第16.1二次根式第2课时
人教版数学八年级下册1.理解二次根式性质2.理解二次根式的性质.3.利用二次根式性质进行计算.
学习目标
二次根式:形如
的式子条件:含有二次根号;
根号下可以是一个数字,也可以是一个字母或式子,只要满足大于或者等于0就行。二次根式的性质1:二次根式被开方数的非负性既所有的二次根式,它的被开方数一定是大于或者等于0的,否则就没有意义,也就不是二次根式。
复习引入
二次根式:形如
的式子条件:含有二次根号;
根号下可以是一个数字,也可以是一个字母或式子,只要满足大于或者等于0就行。二次根式的性质1:二次根式被开方数的非负性既所有的二次根式,它的被开方数一定是大于或者等于0的,否则就没有意义,也就不是二次根式。
探究新知
二次根式:形如
的式子条件:含有二次根号;
根号下可以是一个数字,也可以是一个字母或式子,只要满足大于或者等于0就行。二次根式的性质1:二次根式被开方数的非负性既所有的二次根式,它的被开方数一定是大于或者等于0的,否则就没有意义,也就不是二次根式。
二次根式结果的非负性二次根式的双重非负性
探究新知
典型例题例.已知|a-3|+=0,则a+b=
.分析:根据题意得,a-3=0,9+b=0,解得:a=3,b=-9,∴a+b=3+(-9)=-6.-6方法总结:在实数范围内,“几个非负数之和等于0,则每个非负数都等于0”这个结论仍然成立,据此可求出一些字母的取值.二次根式还有哪些别的性质呢?
探究二次根式的性质2:
即任意一个数的平方的算术平方根就等于它的绝对值
二次根式的性质3:特
殊一
般即
一个非负数的算术平方根的平方等于它本身
研究方法:探究二次根式的性质3:
二次根式的性质3:特
殊一
般研究方法:即
一个非负数的算术平方根的平方等于它本身
探究二次根式的性质3:
如何区别
与
?从运算顺序看从取值范围看从运算结果看先开方,后平方先平方,后开方a≥0a取任何实数a|a|意义表示一个非负数a的算术平方根的平方表示一个实数a的平方的算术平方根总结归纳公式谐音记忆:“平方里面绝对值”(买房子的时候平方在室内就公摊小,绝对值)
|a|(a为全体实数)二次根式的性质课堂小结1.化简得()A.±4B.±2C.4D.-4C2.当1<x<3时,的值为()A.3B.-3C.1D.-1D练习1.当x=-1时,求代数式x2+2x+2的值.解:原式=(x+1)2+1.当x=-1时,原式=(-1+1)2+1=2023+1=2024.提升2.【核心素养·应用意识】已知a,b,c是△ABC的三边长,若=6,求a的值.解:由题意,得a+c>b,a+b>c,∴a=3.∴
=(a+c-b)+(a+b-c)=2a=6.提升3.(2023·广州海珠区校级期中)实数a在数轴上的位置如图所示,则|a+1|-=()A.2a-1B.2a+3C.-1D.3A提升※代数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 切管器项目投资可行性研究分析报告(2024-2030版)
- 2020-2025年中国品牌蜂蜜行业市场前景预测及投资战略研究报告
- 中国牦牛行业发展监测及投资前景展望报告
- 2025年中国测力仪行业发展运行现状及投资潜力预测报告
- 2025-2030中国棘突间撑开器行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国核动力蒸汽发生器行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国服装首饰行业市场发展趋势与前景展望战略研究报告
- 重庆橡胶制品项目可行性研究报告
- 2025-2030中国智能电话机行业市场深度调研及市场供需与投资价值研究报告
- 2025-2030中国智能再干机行业发展分析及投资前景预测研究报告
- API-620 大型焊接低压储罐设计与建造
- 年产300吨莲子蛋白粉工厂的设计
- 部编统编版五年级下册道德与法治全册教案教学设计与每课知识点总结
- 箱变施工安全文明保证措施
- 浙江省杭州市介绍(课堂PPT)
- 擦窗机安全技术交底
- 001压力管道安装安全质量监督检验报告
- 基于分形理论的雷电先导三维建模与仿真
- 模具钳工试题及答案
- 公司控制权法律意见书三篇
- 全日制专业学位研究生《环境生态学》课程案例教学模式探讨
评论
0/150
提交评论