版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于溶胶凝胶合成法目录基本概念溶胶-凝胶法发展历程溶胶-凝胶基本原理溶胶-凝胶合成方法的适用范围溶胶-凝胶工艺过程溶胶-凝胶合成方法应用举例第2页,共68页,2024年2月25日,星期天溶胶-凝胶基本概念第3页,共68页,2024年2月25日,星期天溶胶-凝胶法的基本概念胶体(colloid)是一种分散相粒径很小的分散体系,分散相粒子的重力可以忽略,粒子之间的相互作用主要是短程作用力。溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在1~100nm之间。凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体,凝胶中分散相的含量很低,一般在1%~3%之间。溶胶无固定形状固相粒子自由运动凝胶固定形状固相粒子按一定网架结构固定不能自由移动*特殊的网架结构赋予凝胶很高的比表面积*第4页,共68页,2024年2月25日,星期天溶胶-凝胶法:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。溶胶-凝胶法的基本概念溶解前驱体溶液溶胶凝胶凝胶水解缩聚老化第5页,共68页,2024年2月25日,星期天溶胶凝胶发展历程第6页,共68页,2024年2月25日,星期天溶胶-凝胶法的发展历程1846年Ebelmen发现凝胶20世纪30年代W.Geffcken采用金属醇盐制备氧化物薄膜1971年Dislich制备了SiO2-B2O-Al2O3-Na2O-K2O多组分玻璃1975年Yoldas和Yamane得到整块陶瓷和透明氧化铝膜80年代后玻璃、氧化物涂层功能陶瓷粉料复合氧化物陶瓷材料重要化学合成方法第7页,共68页,2024年2月25日,星期天溶胶-凝胶基本原理第8页,共68页,2024年2月25日,星期天1.胶体稳定原理-DLVO理论1、双电层与ζ电位溶胶体系中,由于静电引力的存在会使溶液中的反离子向颗粒表面靠拢,并排斥同离子,固体表面电荷与溶液中反电荷形成了双电层结构。被吸附的离子与固体表面结合牢固,固体和液体相对运动时,固体带动部分反离子一起滑动。AB面是发生电动现象时的实际滑动面,滑动面上的电位即ζ电位。ζ电位等于零时的pH点成为等电点。
φ0+++++++----------ABζDistancexfromsurface+++++++++++++++----------------ParticleSurfacechargeliquid第9页,共68页,2024年2月25日,星期天1.胶体稳定原理-DLVO理论
一种关于胶体稳定性的理论。由德亚盖因和兰多于1941年,弗韦与奥弗比克于1948年各自提出。因此,通常以四人名字的起首字母命名该理论,他们认为溶胶在一定条件下能否稳定存在取决于胶粒之间相互作用的位能。总位能等于范德华吸引位能和由双电层引起的静电排斥位能之和。
这两种位能都是胶粒间距离的函数,吸引位能与距离的六次方成反比,而静电的排斥位能则随距离按指数函数下降。第10页,共68页,2024年2月25日,星期天胶体稳定原理-DLVO理论颗粒间的范德华力双电层静电排斥能粒子间总作用能
溶胶是固体或大分子颗粒分散于液相的胶体体系,具有很大的界面存在,界面原子的吉布斯自由能比内部原子高,粒子间便有相互聚结从而降低表面能的趋势。增加体系中粒子间结合所须克服的能垒可使之在动力学上稳定。增加粒子间能垒通常有三个基本途径:(1)使胶粒带表面电荷;(2)利用空间位阻效应;(3)利用溶剂化效应。
第11页,共68页,2024年2月25日,星期天溶胶稳定机制溶胶颗粒表面电荷来自胶粒晶格离子的选择性电离,或选择性吸附溶剂中的离子。金属氧化物水溶胶,一般优先吸附H+或OH-。当pH>PZC时,胶粒表面带负电荷;反之,则带正电荷。根据DLVO理论,胶粒受到双电层斥力和长程范德华引力二种作用,此外,胶粒间相互作用还有分子间的范德华力和由表层价电子重叠引起的短程波恩斥力。第12页,共68页,2024年2月25日,星期天2.溶胶-凝胶合成方法基本原理水解反应:M(OR)n+xH2O→M(OH)
(OR)n-1+xR-OH
缩聚反应:(OR)n-1M-OH+HO-M(OR)n-1→(OR)n-1M-O-M(OR)n-1+H2O
m(OR)n-2M(OH)2→[(OR)n-2M-O]m+mH2Om(OR)n-3M(OH)3→[(OR)n-3M-O]m+mH2O+mH+
羟基与烷氧基之间也存在缩合反应
:1、醇盐的水解-缩聚反应(OR)n-x(HO)x-lM-OH+ROM(OR)n-x-l(OH)x→(OR)n-x(OH)x-lM-O-M(OR)n-x-l(OH)x+R-OH
第13页,共68页,2024年2月25日,星期天2.溶胶-凝胶合成方法基本原理溶胶凝胶合成中常用的醇盐阳离子M(OR)n阳离子M(OR)nSiSi(OCH3)4Si(OC2H5)4GeGe(OC2H5)4AlAl(O-iC3H7)3Al(O-sC4H9)3ZrZr(O-iC3H7)4TiTi(O-iC3H7)4Ti(OC4H9)4Ti(OC5H7)4YY(OC2H5)3BB(OCH3)3Ca(OC2H5)21、醇盐的水解-缩聚反应第14页,共68页,2024年2月25日,星期天水解反应:Mn+
+nH2O→M(OH)n
+nH+凝胶化2、无机盐的水解-缩聚反应2.溶胶-凝胶合成方法基本原理脱水凝胶化碱性凝胶化胶粒脱水,扩散层中电解质浓度增加,凝胶化能垒逐渐减小
xM(H2O)nz++yOH-+aA-→MxOu(OH)y-2u(H2O)nAa(xz-y-a)++(xn+u-n)H2OA-——凝胶过程中所加入的酸根离子。当x=1时,形成单核聚合物;在x>1时,形成多核聚合物。Mz+可通过O2-、OH-、H2或A-与配体桥联。第15页,共68页,2024年2月25日,星期天在较高的温度下通过可控制的成核作用和晶体生长获得溶胶
金属盐在过量碱作用下于室温迅速水解形成凝胶状沉淀,将过量电解质洗去,加入强酸在较高的温度下分散成溶胶2、无机盐的水解-缩聚反应:浓缩法和分散法2.溶胶-凝胶合成方法基本原理第16页,共68页,2024年2月25日,星期天溶胶-凝胶合成方法的适用范围第17页,共68页,2024年2月25日,星期天块体材料多孔材料纤维材料复合材料粉体材料薄膜及涂层材料溶胶凝胶第18页,共68页,2024年2月25日,星期天
溶胶-凝胶合成法制备的块体材料是指具有三维结构,且每一维尺度均大于1mm的各种形状且无裂纹的产物。
1.块体材料
根据所需获得材料的性能需求,将前驱体进行水解、溶胶、凝胶、老化和干燥,最终通过热处理工艺获得材料
。
该方法制备块体材料具有纯度高、材料成分易控制、成分多元化、均匀性好、材料形状多样化、且可在较低的温度下合成并致密化等优点。
可以用于制备各种光学透镜、功能陶瓷块、梯度折射率玻璃等
。
成本较高,生产周期长,故不适宜材料大规模的生产
。
第19页,共68页,2024年2月25日,星期天胶质晶态模板结构性多孔复制品气凝胶块体气凝胶隔热2.多孔材料多孔材料是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。
将金属醇盐溶解于低级醇中,水解得到相应金属氧化物溶胶;调节pH值,纳米尺度的金属氧化物微粒发生聚集,形成无定形网络结构的凝胶。将凝胶老化、干燥并作热处理,有机物分解后,得到多孔金属氧化物材料(一般为陶瓷)
溶胶-凝胶+模板工艺多孔材料第20页,共68页,2024年2月25日,星期天溶胶-凝胶制备的Al2O3-YAG纤维
3.纤维材料前驱体经反应形成类线性无机聚合物或络合物,当粘度达10~100Pa·s时,可制成凝胶纤维,热处理后可转变成相应玻璃或陶瓷纤维。克服了传统直接熔融纺丝法因特种陶瓷难熔融而无法制成纤维的困难,工艺可以在低温下进行,纤维陶瓷均匀性好、纯度高。初始原料混合搅拌前驱体溶胶浓缩粘性溶胶纺丝凝胶纤维干燥热处理陶瓷纤维第21页,共68页,2024年2月25日,星期天4.复合材料复合材料不同组分之间的复合材料
组成和结构不同的纳米复合材料组成和结构均不同的组分所制备的纳米复合材料
凝胶与其中沉积相组成的复合材料
干凝胶与金属相之间的复合材料有机-无机杂化复合材料解决了材料的制备时在退火处理过程中,有机材料易分解的问题
第22页,共68页,2024年2月25日,星期天材料可掺杂范围宽,化学计量准,易于改性溶胶凝胶制备陶瓷粉体具有制备工艺简单、无需昂贵的设备大大增加多元组分体系化学均匀性反应过程易控制,可以调控凝胶的微观结构产物纯度高等5.粉体材料采用溶胶-凝胶合成法,将所需成分的前驱物配制成混合溶液,经凝胶化、热处理后,一般都能获得性能指标较好的粉末。凝胶中含有大量液相或气孔,在热处理过程中不易使粉末颗粒产生严重团聚同时此法易在制备过程中控制粉末颗粒度。
钛酸四丁脂体系纳米TiO2粉末
第23页,共68页,2024年2月25日,星期天6.薄膜及涂层材料工艺流程:将溶液或溶胶通过浸渍法或旋转涂膜法在基板上形成液膜,经凝胶化后通过热处理可转变成无定形态(或多晶态)膜或涂层
成膜机理:采用适当方法使经过处理的陶瓷基底和溶胶相接触,在基底毛细孔产生的附加压力下,溶胶倾向于进入基底孔隙,当其中介质水被吸入孔道内同时胶体粒子的流动受阻在表面截留,增浓,缩合,聚结而成为一层凝胶膜。对浸渍法来说,凝胶膜的厚度与浸渍时间的平方根成正比,膜的沉积速度随溶胶浓度增加而增加,随基底孔径增加而减小
优点:膜层与基体的适当结合可获得基体材料原来没有的电学、光学、化学和力学等方面的特殊性能
第24页,共68页,2024年2月25日,星期天比较项PVDCVD溶胶-凝胶物质源生成膜物质的蒸汽含有膜元素的化合物蒸汽、反应气体含膜元素的无机盐、醇盐或羧酸盐等激活方式消耗蒸发热、电离等提供激活能、高温、化学自由能加热处理制备温度250~2000℃(蒸发源)25~适合温度(基片)150~2000℃(基片)300~800℃(基片)膜结构单晶、多晶、非晶单晶、多晶、非晶膜致密性致密致密较致密膜附着性较好好好化学组成相组成均匀性一般较高高成本高高低溶胶凝胶法上涂层的PZT薄膜的微观照片第25页,共68页,2024年2月25日,星期天溶胶-凝胶合成工艺第26页,共68页,2024年2月25日,星期天1.溶胶-凝胶合成生产工艺种类Sol-Gel过程类型化学特征凝胶前驱体应用胶体型调整pH值或加入电解质使粒子表面电荷中和,蒸发溶剂使粒子形成凝胶密集的粒子形成凝胶网络凝胶中固相含量较高凝胶透明,强度较弱前驱体溶胶是由金属无机化合物与添加剂之间的反应形成的密集粒子粉末薄膜无机聚合物型前驱体水解和聚合由前驱体得到的无机聚合物构成的凝胶网络刚形成的凝胶体积与前驱体溶液体积完全一样证明凝胶形成的参数-凝胶时间随着过程中的其它参数变化而变化凝胶透明主要是金属烃氧化物薄膜块体纤维粉末络合物型络合反应导致较大混合配合体的络合物的形成由氢键连接的络合物构成凝胶网络凝胶在湿气中可能会溶解凝胶透明金属醇盐、硝酸盐或醋酸盐薄膜粉末纤维第27页,共68页,2024年2月25日,星期天不同溶胶-凝胶过程中凝胶的形成
微粒的形成(gel)前驱体溶液络合物前驱体水解产物(sol)凝胶(gel)化学添加剂调节pH值或加入电解质中和微粒表面电荷蒸发溶剂H2O催化剂缩聚反应络合剂减压蒸发1.溶胶-凝胶合成生产工艺种类第28页,共68页,2024年2月25日,星期天2.溶胶-凝胶合成生产设备
12345电力搅拌溶胶-凝胶合成反应示意图1.回流装置2.电力式脉动器3.温度计4.容器5.水热装置1234567磁力搅拌溶胶-凝胶合成反应示意图1.容器2.密封盖板3.反应溶液4.转动磁子5.磁力搅拌器加热板6.温度调节器7.转速调节器
第29页,共68页,2024年2月25日,星期天3.溶胶-凝胶工艺过程
Sol-gel合成材料溶液-溶胶化凝胶化-成型固化处理超细粉和溶液机械混合形成胶液
金属无机化合物或金属醇盐水解
金属有机化合物水解
干燥热处理溶胶-凝胶工艺过程第30页,共68页,2024年2月25日,星期天前驱体溶液透明溶胶成膜过程成纤过程雾化收集湿凝胶薄膜纤维粉末干凝胶水和催化剂固化处理阶段成品凝胶成型过程
3.溶胶-凝胶工艺过程
第31页,共68页,2024年2月25日,星期天4.溶胶-凝胶工艺参数
溶胶凝胶溶胶-凝胶凝胶处理干燥及热处理前驱体选择反应配比反应时间溶液pH值反应时间金属离子半径络合剂催化剂干燥方法热处理工艺老化方式老化时间静止老化加入老化液常压干燥超临界干燥冷冻干燥第32页,共68页,2024年2月25日,星期天4.溶胶-凝胶工艺参数
前驱体选择金属醇盐金属无机盐易水解、技术成熟、可通过调节pH值控制反应进程价格昂贵、金属原子半径大的醇盐反应活性极大、在空气中易水解、不易大规模生产、受OR烷基的体积和配位影响价格低廉、易产业化受金属离子大小、电位性及配位数等多种因素影响第33页,共68页,2024年2月25日,星期天4.溶胶-凝胶工艺参数
水解度的影响TEOS水金属醇盐物质量比水解度R水解度R≤2,水解反应则产生了部分水解的带有-OH的硅烷,从而消耗掉大部分水,缩聚反应较早发生,形成TEOS的二聚体,硅酸浓度减少,凝胶时间延长
研究表明水解度R≥2,TEOS(正硅酸乙酯)水解反应使大部分的-OR基团脱离,产生-OH基团,形成了部分水解的带有-OH的硅烷,在这些部分水解的硅烷之间容易反应形成二聚体,这些二聚体不再进行水解,而是发生交联反应形成三维网络结构,从而缩短了凝胶化时间.
第34页,共68页,2024年2月25日,星期天4.溶胶-凝胶工艺参数
催化剂的影响反应速率pH值对TEOS水解、缩聚反应速率的影响
第35页,共68页,2024年2月25日,星期天4.溶胶-凝胶工艺参数
反应温度的影响反应温度对凝胶时间以及是否凝胶有直接关系升高温度可以缩短体系的凝胶时间提高温度对醇盐的水解有利对水解活性低的醇盐(如硅醇盐),常在加热下进行水解,当体系的温度升高后,体系中分子的平均动能增加,分子运动速率提高,这样就提高了反应基团之间的碰撞的几率,而且可以使更多的前驱体原料成为活化分子,这相当于提高了醇盐的水解活性,从而促进了水解反应的进行,最终缩短了凝胶时间。
第36页,共68页,2024年2月25日,星期天4.溶胶-凝胶工艺参数
络合剂的使用前驱体溶解度小反应活性大水解速度过快络合剂减缓反应速率避免沉淀乙酰丙酮醋酸二乙醇胺Ti(OPri)4+AcAcH→Ti(OPri)AcAcH+PriOH
(钛原子的配位数由4增加到5)例在水解初期,(OPri)配位体首先被水移走,然而AcAc配位可保持时间相当长的时间,甚至大量的水不能去除,在水解反应最后,仍有少量的钛原子与AcAcH键合,这些配位体阻止了进一步的聚合,形成稳定的胶体溶液第37页,共68页,2024年2月25日,星期天反应实例第38页,共68页,2024年2月25日,星期天溶胶-凝胶法应用(1)—气凝胶气凝胶是由胶体粒子或高聚物分子相互聚结构成的纳米多孔网络固态非晶材料,其多孔率可达到80~99.8%,比表面积可高达到800~1000m2/g以上。气凝胶具有很低的密度,美国LarryHrubesh领导的研究者曾经制备了密度仅为0.003g/cm3的气凝胶,其密度仅为空气的三倍,被称为“固体烟”。
前驱体溶胶水聚合凝胶气凝胶气凝胶形成示意图
第39页,共68页,2024年2月25日,星期天溶胶-凝胶法应用(1)—气凝胶水解缩聚脱水工艺流程第40页,共68页,2024年2月25日,星期天气凝胶样品进行的表面形貌分析溶胶-凝胶法应用(1)—气凝胶第41页,共68页,2024年2月25日,星期天溶胶凝胶法制备的氧化锆涂层溶胶-凝胶法应用(2)—ZrO2耐热涂层
第42页,共68页,2024年2月25日,星期天氧化锆涂层和基体的微观照片(a)镁合金基板;(b)氢氟酸处理的基板;(c)涂有氧化锆的涂层(低倍数);(d)氧化锆的涂层(高倍数)溶胶-凝胶法应用(2)—ZrO2耐热涂层
第43页,共68页,2024年2月25日,星期天应用实例(3):溶胶凝胶-自蔓延制备生物玻璃粉体
溶胶-凝胶自蔓延合成技术兼具溶胶-凝胶技术和自蔓延高温合成技术的优点,它是指有机盐凝胶或有机盐(燃料)与金属硝酸盐在加热过程中发生氧化还原反应,燃烧产生大量的气体,可自我维持并合成所需燃烧物的材料的合成工艺。本实例是采用溶胶-凝胶自蔓延方法制备一种生物玻璃超细陶瓷粉体。通常用于制备生物玻璃陶瓷材料粉末的方法是高温熔化(HTM)法。这种方法制备周期短,过程简单,是一种传统的玻璃制备方法。粉末的TEM图
(a)研细前的SGS粉(b)研细后的SGS粉(c)研细后的SG粉
第44页,共68页,2024年2月25日,星期天溶胶-凝胶法的优势起始原料是分子级的能制备较均匀的材料较高的纯度组成成分较好控制,尤其适合制备多组分材料可降低程序中的温度具有流变特性,可用于不同用途产品的制备可以控制孔隙度容易制备各种形状第45页,共68页,2024年2月25日,星期天溶胶-凝胶法的缺陷原料成本较高存在残留小孔洞存在残留的碳较长的反应时间有机溶剂对人体有一定的危害性第46页,共68页,2024年2月25日,星期天零电荷点
pointofzerocharge;P.Z.C.
当溶液中决定电位离子的浓度为某一特定值时,固体表面上的净电荷等于零,两相(固/液)之间由自由电荷引起的电位差也为零,此时溶液中决定电位离子的浓度称为零电荷点(P.Z.C.)。
与其密切相关的另一物理量是等电点(I.P.C),它指的是固体表面的ζ电势为零的情形。
在没有特性吸附离子存在时,等电点与零电荷点的数值相同。第47页,共68页,2024年2月25日,星期天常见的烷基有:甲基CH3—(Me)乙基CH3CH2—(Et)正丙基CH3CH2CH2—(n-Pr)异丙基(CH3)2CH—(iso-Pr)正丁基CH3CH2CH2CH2—(n-Bu)异丁基(CH3)2CHCH2—(iso-Bu)
仲丁基(sec-Bu)
叔丁基(CH3)3C—(ter-Bu)第48页,共68页,2024年2月25日,星期天渗析:又称透析。一种以浓度差为推动力的膜分离操作,利用膜对溶质的选择透过性,实现不同性质溶质的分离。即利用半透膜能透过小分子和小离子但不能透过胶体粒子的性质从溶胶中除掉作为杂质的小分子或离子的过程。
第49页,共68页,2024年2月25日,星期天PZT压电陶瓷(锆钛酸铅)是将二氧化铅、锆酸铅、钛酸铅在1200度高温下烧结而成的多晶体。
它是PbZrO3和PbTiO3的固溶体,具有钙钛矿型结构。PbTiO3和PbZrO3是铁电体和反铁电体的典型代表,因为Zr和Ti属于同一副族,PbTiO3和PbZrO3具有相似的空间点阵形式,但两者的宏观特性却有很大的差异,钛酸铅为铁电体,其居里温度为492℃,而锆酸铅却是反铁电体,居里温度为232℃,如此大的差异引起了人们的广泛关注。研究PbTiO3和PbZrO3的固溶体后发现PZT具有比其它铁电体更优良的压电和介电性能,PZT以及掺杂的PZT系列铁电陶瓷成为近些年研究的焦点
PVD是英文PhysicalVaporDeposition(物理气相沉积)的缩写,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。
CVD(ChemicalVaporDeposition,化学气相淀积),指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。在超大规模集成电路中很多薄膜都是采用CVD方法制备。经过CVD处理后,表面处理膜密着性约提高30%,防止高强力钢的弯曲,拉伸等成形时产生的刮痕。
第50页,共68页,2024年2月25日,星期天
冷冻干燥又称升华干燥。将含水物料冷冻到冰点以下,使水转变为冰,然后在较高真空下将冰转变为蒸气而除去的干燥方法。物料可先在冷冻装置内冷冻,再进行干燥。但也可直接在干燥室内经迅速抽成真空而冷冻。升华生成的水蒸气借冷凝器除去。升华过程中所需的汽化热量,一般用热辐射供给。其主要优点是:1.干燥后的物料保持原来的化学组成和物理性质(如多孔结构、胶体性质等);2.热量消耗比其他干燥方法少。缺点是费用较高,不能广泛采用。用于干燥抗生素、蔬菜和水果等。超临界干燥溶胶-凝胶法制备纳米多孔材料干燥过程的一种工艺。由于凝胶骨架内部的溶剂存在表面张力,在普通的干燥条件下会造成骨架的坍缩。超临界干燥旨在通过压力和温度的控制,使溶剂在干燥过程中达到其本身的临界点,完成液相至气相的超临界转变。过程中溶剂无明显表面张力,在维持骨架结构的前提下完成湿凝胶相气凝胶的转变。超临界干燥使用的器具为高压釜,高压釜的密闭性要求高。通常超临界干燥工艺需要的实验周期相对较长、产量较低、成本较高,制备要求较严格产品。
第51页,共68页,2024年2月25日,星期天气凝胶
又称为干凝胶。当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。如明胶、阿拉伯胶、硅胶、毛发、指甲等。气凝胶也具凝胶的性质,即具膨胀作用、触变作用、离浆作用。世界最轻的固体,密度仅为3.55千克每立方米,仅为空气密度的2.75倍;主要由纯二氧化硅等组成。在制作过程中,液态硅化合物首先与能快速蒸发的液体溶剂混合,形成凝胶,然后将凝胶放在一种类似加压蒸煮器的仪器中干燥,并经过加热和降压,形成多孔海绵状结构。琼斯博士最终获得的气凝胶中空气比例占到了99.8%。第52页,共68页,2024年2月25日,星期天第53页,共68页,2024年2月25日,星期天第54页,共68页,2024年2月25日,星期天气凝胶
气凝胶因其半透明的色彩和超轻重量,有时也被称为“固态烟”或“冻住的烟”。别看这种气凝胶貌似“弱不禁风”,其实非常坚固耐用。它可以承受相当于自身质量几千倍的压力,在温度达到1200摄氏度时才会熔化。此外它的导热性和折射率也很低,绝缘能力比最好的玻璃纤维还要强39倍。由于具备这些特性,气凝胶便成为航天探测中不可替代的材料,俄罗斯“和平”号空间站和美国“火星探路者”探测器都用它来进行热绝缘。气凝胶在航天中的应用远不止这些,美国国家宇航局的“星尘”号飞船正带着它在太空中执行一项十分重要的使命———收集彗星微粒。科学家认为,彗星微粒中包含着太阳系中最原始、最古老的物质,研究它可以帮助人类更清楚地了解太阳和行星的历史。2006年,“星尘”号飞船将带着人类获得的第一批彗星星尘样品返回地球。第55页,共68页,2024年2月25日,星期天气凝胶星尘号探测器携带的气凝胶所捕捉到的彗星尘埃第56页,共68页,2024年2月25日,星期天气凝胶
但收集彗星星尘并不是件容易的事,它的速度相当于步枪子弹的6倍,尽管体积比沙粒还要小,可是当它以如此高速接触其它物质时,自身的物理和化学组成都有可能发生改变,甚至完全被蒸发。如今科学家有了气凝胶,这个问题就变得很简单了。它就像一个极其柔软的棒球手套,可以轻轻地消减彗星星尘的速度,使它在滑行一段相当于自身长度200倍的距离后慢慢停下来。在进入“气凝胶手套”后,星尘会留下一段胡萝卜状的轨迹,由于气凝胶几乎是透明的,科学家可以按照轨迹轻松地找到这些微粒。第57页,共68页,2024年2月25日,星期天气凝胶
化学家打赌时发明气凝胶气凝胶俗称“冷冻烟雾”,将硅胶中的水提取出来,然后用诸如二氧化碳之类的气体取代水的方法制成的。得到的这种物质有很好的隔热能力,还能吸收象原油一样的污染物。1931年,美国一位化学家与同事打赌,将普通硅胶的水分取掉,再注入二氧化碳等气体,结果产生了一种如梦如幻的固体。这种固体的特别之处在于,尽管它号称固体,但99%的物质却是气体,因此,外界给它起了个“冻结的烟雾”的绰号。早期的气凝胶非常易碎和昂贵。1996年前美国宇航局开始对这种物质感兴趣,并让其发挥更为实际的用途.第58页,共68页,2024年2月25日,星期天气凝胶
2002年,美国宇航局创立的阿斯彭气凝胶(AspenAerogel)公司生产了一种更坚固、更柔韧的气凝胶。现在它正用来为人类首次登陆火星时所穿的太空服研制一种保温隔热衬里,派宇航员登陆火星预定于2018年进行。该公司的一位资深科学家马克·克拉耶夫斯基认为,一层18毫米的气凝胶将足以保护宇航员抵御零下130度的低温。他说:“它是我们所见过的最棒的绝热材料。”现在还在用气凝胶作未来的防弹住宅和军用车辆装甲的测试。在实验室中,一个涂有6毫米气凝胶的金属板在炸药爆炸中几乎毫发无损。它还有环保的优点。气凝胶被科学家们描述为“终极海绵”,其表面的数百万小孔使其成为在水中吸附污染物的理想材料。卡纳茨迪斯已经研制出一种新型气凝胶,用于除去水中的铅和水银。其它形式的气凝胶可吸附溢出的油。第59页,共68页,2024年2月25日,星期天气凝胶-----气凝胶正走进日常生活运动器材公司邓禄普(Dunlop)已经研制出一系列用气凝胶加固的壁球和网球球拍,据说这种球拍能释放更大的力量。今年初,英国诺丁汉66岁的鲍勃·斯托克尔拥有了一套用气凝胶隔热的房子,他也因此成为拥有这种房子的第一位英国人。他说:“保温效果大大改善了。我把自动调温器调低了5度。这真是一个不可思议的变化。”第60页,共68页,2024年2月25日,星期天气凝胶
登山者也开始从气凝胶中受益。去年,一位英国登山者安妮·帕曼特尔穿上带气凝胶鞋垫的靴子爬上珠穆朗玛峰,就连睡袋也加有这种材料。她说:“我唯一的问题就是我的脚太热,这对一名登山者来说是一个大难题。”不过,它还没能征服时尚界。HugoBoss公司推出了一系列用这种材料制成的冬季夹克,但在消费者纷纷抱怨这种衣服太热之后不得不下架。第61页,共68页,2024年2月25日,星期天气凝胶
尽管气凝胶属于一种固体,但这种物质99%是由气体构成,这使得它外观看起来像云一样。科学家们表示,因为它有数百万小孔和皱摺,所以如果把1立方厘米的气凝胶拆开,它会填满一个有足球场那么大的地方。它的小孔不仅能像一块海绵一样吸附污染物,还能充当气穴。研究人员认为,一些形式的由铂金制成的气凝胶能用于加速氢的产生。这样的话,气凝胶就能用来生产以氢为基础的燃料。气凝胶内含大量的空气,典型的孔洞线度在l—l00纳米范围,孔洞率在80%以上,是一种具有纳米结构的多孔材料,在力学、声学、热学、光学等诸方面均显示其独特性质。它们明显不同于孔洞结构在微米和毫米量级的多孔材料,其纤细的纳米结构使得材料的热导率极低,具有极大的比表面积.对光、声的散射均比传统的多孔性材料小得多,这些独特的性质不仅使得该材料在基础研究中引起人们兴趣,而且在许多领域蕴藏着广泛的应用前景。第62页,共68页,2024年2月25日,星期天气凝胶
在分形结构研究方而,硅气凝胶作为一种结构可控的纳米多孔材料,其表现密度明显依赖于标度尺寸,在一定尺度范围内,其密度往往具有标度不变性,即密度随尺度的增加而下降,而且具有自相似结构,在气凝胶分形结构动力学研究方面的结构还表明,在不同尺度范围内,有三个色散关系明显不同的激发区域,分别对应于声子、分形子和粒子模的激发。改变气凝胶的制备条件,可使其关联长度在两个量级的范围内变化。因此硅气凝胶已成为研究分形结构及其动力学行为的最佳材料。在“863”高技术强激光研究方面,纳米多孔材料具有重要应用价值,如利用低于临界密度的多孔靶材料,可望提高电子碰撞激发产生的X光激光的光束质量,节约驱动能,利用微球形节点结构的新型多孔靶,能够实现等离于体三维绝热膨胀的快速冷却,提高电子复合机制产生的x光激光的增益系数,利用超低密度材料吸附核燃料,可构成激光惯性约束聚变的高增益冷冻靶。气凝胶纤细的纳米多孔网络结构、巨大的比表面积、结构介观尺度上可控,成为研制新型低密度靶的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025格子租赁合同格式
- 中国药品冷链物流行业市场调查研究及投资潜力预测报告
- 2024年度天津市公共营养师之二级营养师典型题汇编及答案
- 2024年度四川省公共营养师之三级营养师每日一练试卷A卷含答案
- 2025年消毒鲜牛奶项目可行性研究报告
- 2025年花生奶糖项目可行性研究报告
- 中国聚乙烯基吡咯烷酮项目投资可行性研究报告
- 木花盆架项目可行性研究报告
- 遥测温度计行业市场发展及发展趋势与投资战略研究报告
- 2025年中国便携式医疗器械市场运行态势及行业发展前景预测报告
- 常见抗痛风药物课件整理
- 大概念视域下高中历史融通教学浅思+课件
- 中学生使用手机的利与弊
- 一氧化铅安全技术说明书MSDS
- kv杆塔防腐施工组织设计
- 家装工地形象及成品保护验收标准
- GB/T 28799.2-2020冷热水用耐热聚乙烯(PE-RT)管道系统第2部分:管材
- 《毛泽东思想概论》题库
- 劳务派遣人员考核方案
- 意志力讲解学习课件
- 生产作业员质量意识培训课件
评论
0/150
提交评论