内江市重点中学2024届数学八年级下册期末统考试题含解析_第1页
内江市重点中学2024届数学八年级下册期末统考试题含解析_第2页
内江市重点中学2024届数学八年级下册期末统考试题含解析_第3页
内江市重点中学2024届数学八年级下册期末统考试题含解析_第4页
内江市重点中学2024届数学八年级下册期末统考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内江市重点中学2024届数学八年级下册期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知,,是一次函数图象上不同的两个点,若,则的取值范围是()A. B. C. D.2.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A. B. C. D.3.如图,点A,B分别在函数y=(k1>0)与函数y=(k2<0)的图象上,线段AB的中点M在x轴上,△AOB的面积为4,则k1﹣k2的值为()A.2 B.4 C.6 D.84.如图,在平面直角坐标系中,已知,,顶点在第一象限,,在轴的正半轴上(在的右侧),,,与关于所在的直线对称.若点和点在同一个反比例函数的图象上,则的长是()A.2 B.3 C. D.5.下列函数中,表示y是x的正比例函数的是()A.y=﹣0.1x B.y=2x2 C.y2=4x D.y=2x+16.不等式2x+1>x+2的解集是()A.x>1 B.x<1 C.x≥1 D.x≤17.下列各式从左到右的变形中,是因式分解的为()A. B.C. D.8.如图,二次函数的图象与轴交于两点,与轴交于点,则下列说法错误的是()A. B.C.当时, D.当时,随的增大而减小9.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)210.将一次函数y=﹣2x的图象向下平移6个单位,得到新的图象的函数解析式为()A.y=﹣8x B.y=4x C.y=﹣2x﹣6 D.y=﹣2x+611.一次函数不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.在ABCD中,∠A=40°,则∠C=()A.40° B.50° C.130° D.140°二、填空题(每题4分,共24分)13.如图所示,工人师傅做一个矩形铝合金窗框分下面三个步骤进行先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.(1)摆放成如图②的四边形,则这时窗框的形状是平行四边形,它的依据是.(2)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是矩形,它的依据是.14.若是一元二次方程的一个根,则根的判别式与平方式的大小比较_____(填>,<或=).15.菱形的周长为8,它的一个内角为60°,则菱形的较长的对角线长为__________.16.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。17.方程在实数范围内的解是_____.18.如图,在菱形中,,菱形的面积为15,则菱形的对角线之和为__.三、解答题(共78分)19.(8分)有一次,小明坐着轮船由A点出发沿正东方向AN航行,在A点望湖中小岛M,测得∠MAN=30°,航行100米到达B点时,测得∠MBN=45°,你能算出A点与湖中小岛M的距离吗?20.(8分)如图,中,延长到点,延长到点,使,连接、.求证:四边形是平行四边形.21.(8分)为选拔参加八年级数学“拓展性课程”活动人选,数学李老师对本班甲、乙两名学生以前经历的10次测验成绩(分)进行了整理、分析(见图①):(1)写出a,b的值;(2)如要推选1名学生参加,你推荐谁?请说明你推荐的理由.22.(10分)在正方形网格中,点A、B、C都是格点,仅用无刻度的直尺按下列要求作图.(1)在图1中,作线段的垂直平分线;(2)在图2中,作的角平分线.23.(10分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,又分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D.求证:(1)点D在AB的中垂线上.(2)当CD=2时,求△ABC的面积.24.(10分)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为1丈(1丈=10尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面1尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池深多少尺?”25.(12分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.26.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据可得出与异号,进而得出,解之即可得出结论.【详解】,与异号,,解得:.故选:.【点睛】本题考查了一次函数的性质,熟练掌握“当时,随的增大而减小”是解题的关键.2、A【解析】

解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE•BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.3、D【解析】

过点A作AC⊥y轴交于C,过点B作BD⊥y轴交于D,然后根据平行与中点得出OC=OD,设点A(a,d),点B(b,﹣d),代入到反比例函数中有k1=ad,k2=﹣bd,然后利用△AOB的面积为4得出ad+bd=8,即可求出k1﹣k2的值.【详解】过点A作AC⊥y轴交于C,过点B作BD⊥y轴交于D∴AC∥BD∥x轴∵M是AB的中点∴OC=OD设点A(a,d),点B(b,﹣d)代入得:k1=ad,k2=﹣bd∵S△AOB=4∴整理得ad+bd=8∴k1﹣k2=8故选:D.【点睛】本题主要考查反比例函数与几何综合,能够根据△AOB的面积为4得出ad+bd=8是解题的关键.4、B【解析】

作DE⊥y轴于E,根据三角函数值求得∠ACD=∠ACB=60°,即可求得∠DCE=60°,根据轴对称的性质得出CD=BC=2,从而求得CE=1,DE=,设A(m,2),则D(m+3,),根据系数k的几何意义得出k=2m=(m+3),求得m=3,即可得到结论.【详解】解:作轴于,∵中,,,,∴,∴,∴,∵,∴,,设,则,∵,解得,∴,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,勾股定理等知识,求得∠DCE=60°是解题的关键.5、A【解析】

A选项:y=-0.1x,符合正比例函数的含义,故本选项正确.

B选项:y=2x2,自变量次数不为1,故本选项错误;

C选项:y2=4x,y不是x的函数,故本选项错误;

D选项:y=2x+1是一次函数,故本选项错误;

故选A.6、A【解析】试题分析:先移项,再合并同类项,把x的系数化为1即可.解:移项得,2x﹣x>2﹣1,合并同类项得,x>1,故选A点评:本题考查的是在解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.7、D【解析】

根据把整式变成几个整式的积的过程叫因式分解进行分析即可.【详解】A、是整式的乘法运算,不是因式分解,故A不正确;B、是积的乘方,不是因式分解,故B不正确;C、右边不是整式乘积的形式,故C不正确;D、是按照平方差公式分解的,符合题意,故D正确;故选:D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.8、D【解析】

令y=0,求出A,B的坐标,令x=0,求出C点坐标,再根据直角坐标系与二次函数的性质即可求解.【详解】令y=0,得x1=-1,x2=3,∴A(-1,0),B(3,0)∴AB=4,A正确;令x=0,得y=-3,∴C(0,-3)∴OC=BO,,B正确;由图像可知当时,,故C正确,故选D.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据图像求出与坐标轴的交点坐标.9、A【解析】

x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,所以公因式是:x-1,故选A.【点睛】本题考查多项式的公因式,解题的关键是把每一个多项式都因式分解.10、C【解析】

直接利用一次函数平移规律,“上加下减”进而得出即可.【详解】解:将一次函数y=-2x的图象向下平移6个单位,那么平移后所得图象的函数解析式为:y=-2x-6,故选:C.【点睛】此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.11、A【解析】

由于k=-1<0,b=-1,由此可以确定函数的图象经过的象限.【详解】∵y=-x-1,∴k=-1<0,b=-1<0,∴它的图象经过的象限是第二、三、四象限,不经过第一象限.故选A.【点睛】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.12、A【解析】因为平行四边形的对角相等,所以∠A=∠C=40°,故选A二、填空题(每题4分,共24分)13、【答题空1】两组对边分别相等的四边形是平行四边形【答题空2】有一个角是直角的平行四边形是矩形【解析】

(1)∵AB=CD,EF=GH,∴四边形为平行四边形.(两组对边相等的四边形为平行四边形)(2)由(2)知四边形为平行四边形,∵∠C为直角,∴四边形为矩形.(一个角为直角的平行四边形为矩形)【点睛】根据平行四边形的判定,两组对边分别相等的四边形为平行四边形,即可得出②的结论,当把一个角变为直角时,根据一个角为直角的平行四边形为矩形即可得出③的结论.14、=【解析】

首先把(2ax0+b)2展开,然后把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,再代入前面的展开式中即可得到△与M的关系.【详解】把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,∵(2ax0+b)2=4a2x02+4abx0+b2,∴(2ax0+b)2=4a(ax02+bx0)+b2=-4ac+b2=△,∴M=△.故答案为=.【点睛】本题是一元二次方程的根与根的判别式的结合试题,既利用了方程的根的定义,也利用了完全平方公式,有一定的难度.15、【解析】

由菱形的性质可得AB=2,AC⊥BD,BD=2OB,由直角三角形的性质可得AO=1,由勾股定理可求BO的长,即可得BD的长.【详解】解:如图所示:∵菱形ABCD的周长为8,∴AB=2,AC⊥BD,BD=2OB,∵∠ABC=60°,∴∠ABO=∠ABC=30°,∴AO=1,∴BO=,∴BD=,故答案为:.【点睛】本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.16、x<【解析】

先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<.【点睛】此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17、【解析】

由x3+8=0,得x3=-8,所以x=-1.【详解】由x3+8=0,得x3=-8,x=-1,故答案为:x=-1.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.18、【解析】

由菱形的性质得出,,,由勾股定理和良宵美景得出OA2+OB2=16①,2OB×OB=15②,①+②得:(OA+OB)2=31,即可得出结果.【详解】解:四边形是菱形,,,,,菱形的面积为15,①,,②,①②得:,,;故答案为:.【点睛】本题考查了菱形的性质、勾股定理、完全平方公式;熟练掌握菱形的性质是解题的关键.三、解答题(共78分)19、A点与湖中小岛M的距离为100+100米;【解析】

作MC⊥AN于点C,设AM=x米,根据∠MAN=30°表示出MC=m,根据∠MBN=45°,表示出BC=MC=m然后根据在Rt△AMC中有AM=AC+MC列出法方程求解即可.【详解】作MC⊥AN于点C,设AM=x米,∵∠MAN=30°,∴MC=m,∵∠MBN=45°,∴BC=MC=m在Rt△AMC中,AM=AC+MC,即:x=(+100)+(),解得:x=100+100米,答:A点与湖中小岛M的距离为100+100米。【点睛】此题考查勾股定理的应用,解题关键在于作辅助线20、证明见解析【解析】

根据平行四边形性质得出AD//BC,AD=BC,求出AF=EC,AF//EC,得出四边形DEBF是平行四边形,根据平行四边形的性质推出即可【详解】证明:∵四边形是平行四边形,∴且,又∵,∴,,∴四边形是平行四边形.【点睛】此题主要考查平行四边形的判定与性质,解题关键在于掌握平行四边形的性质及定理21、(1)a=84.5,b=81;(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.【解析】

(1)依据中位数和众数的定义进行计算即可;(2)依据平均数、中位数、方差以及众数的角度分析,即可得到哪个学生的水平较高.【详解】(1)甲组数据排序后,最中间的两个数据为:84和85,故中位数a(84+85)=84.5,乙组数据中出现次数最多的数据为81,故众数b=81;(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论).【点睛】本题考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.22、见解析.【解析】

(1)直接利用矩形的性质得出AB的中点,再利用AB为底得出等腰三角形进而得出答案;(2)借助网格利用等腰三角形的性质得出答案.【详解】(1)如图所示:直线CD即为所求;(2)如图所示:射线BD即为所求.【点睛】此题主要考查了应用设计与作图,正确借助网格分析是解题关键.23、(1)见解析;(2)6【解析】

(1)根据作图可知AD是∠CAB平分线,然后由等角对等边和线段垂直平分线的性质可得结论;(2)根据含30度角的直角三角形的性质求出AD和AC,进而求出BC的长即可解决问题.【详解】解:(1)根据作图可知AD是∠CAB平分线,∵∠C=90°,∠B=30°,∴∠DAB=∠DAC=∠B=30°,∴DA=DB,∴点D在AB的中垂线上;(2)∵∠DAC=30°,CD=2,∴AD=2CD=4,∴,BD=AD=4,∴BC=CD+BD=6,∴.【点睛】本题考查了尺规作角平分线、等角对等边、线段垂直平分线的性质、含30度角的直角三角形的性质、勾股定理以及三角形的面积计算,灵活运用各性质进行推理计算是解题的关键.24、1尺【解析】

根据勾股定理列出方程,解方程即可.【详解】设这个水池深x尺,由题意得:x2+52=(x+1)2,解得:x=1.答:这个水池深1尺.【点睛】本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.25、(1)证明见解析;(2)①菱形BFEP的边长为cm;②点E在边AD上移动的最大距离为2cm.【解析】

(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论