宁夏固原市西吉县2024年数学八年级下册期末质量跟踪监视试题含解析_第1页
宁夏固原市西吉县2024年数学八年级下册期末质量跟踪监视试题含解析_第2页
宁夏固原市西吉县2024年数学八年级下册期末质量跟踪监视试题含解析_第3页
宁夏固原市西吉县2024年数学八年级下册期末质量跟踪监视试题含解析_第4页
宁夏固原市西吉县2024年数学八年级下册期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏固原市西吉县2024年数学八年级下册期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是()A.2 B.3 C.4 D.52.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.∠B=30° B.AD=BDC.∠ACB=90° D.△ABC是直角三角形4.学习了正方形之后,王老师提出问题:要判断一个四边形是正方形,有哪些思路?甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;丙同学说:判定四边形的对角线相等,并且互相垂直平分;丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等.上述四名同学的说法中,正确的是()A.甲、乙 B.甲、丙 C.乙、丙、丁 D.甲、乙、丙、丁5.如图,平行四边形、矩形、菱形、正方形的包含关系可用如图表示,则图中阴影部分所表示的图形是(

)A.矩形

B.菱形

C.矩形或菱形

D.正方形6.如图,在四边形中,与相交于点,,那么下列条件中不能判定四边形是菱形的为()A.∠OAB=∠OBA B.∠OBA=∠OBC C.AD∥BC D.AD=BC7.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是(

)A.

B.C.

D.8.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是()A.-2B.2C.-50D.509.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A. B. C.4 D.510.如图,在四边形ABCD中,点D在AC的垂直平分线上,.若,则的度数是()A. B. C. D.50°11.若反比例函数y的图象位于第二、四象限,则k能取的最大整数为()A.0 B.-1 C.-2 D.-312.已知一元二次方程,则它的一次项系数为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,已知等边三角形ABC的边长为7,点D为AB上一点,点E在BC的延长线上,且CE=AD,连接DE交AC于点F,作DH⊥AC于点H,则线段HF的长为____________.14.如图,矩形中,,,是边上一点,连接,将沿翻折,点的对应点是,连接,当是直角三角形时,则的值是________15.将直线向下平移4个单位,所得到的直线的解析式为___.16.从某市5000名初一学生中,随机地抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是__________.17.点P(a,b)在第三象限,则直线y=ax+b不经过第_____象限18.如图,反比例函数y=的图象经过矩形OABC的一个顶点B,则矩形OABC的面积等于___.三、解答题(共78分)19.(8分)如图,AD是△ABC边BC上的高,用尺规在线段AD上找一点E,使E到AB的距离等于ED(不写作法,保留作图痕迹)20.(8分)如图,在▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F,求证:四边形BEDF是平行四边形.21.(8分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(10分)如图,在平行四边形中,点、分别是、上的点,且,,求证:(1);(2)四边形是菱形.23.(10分)平面直角坐标系xOy中,直线y=x+b与直线y=x交于点A(m,1).与y轴交于点B(1)求m的值和点B的坐标;(2)若点C在y轴上,且△ABC的面积是1,请直接写出点C的坐标.24.(10分)如图,在平面直角坐标系中,已知直线,都经过点,它们分别与轴交于点和点,点、均在轴的正半轴上,点在点的上方.(1)如果,求直线的表达式;(2)在(1)的条件下,如果的面积为3,求直线的表达式.25.(12分)如图,正方形网格中每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫做格点,已知△ABC的三个顶点都是格点,请按要求画出三角形.(1)将△ABC先上平移1个单位长度再向右平移2个单位长度,得到△A'B'C';(2)将△A'B'C'绕格点O顺时针旋转90°,得到△A''B''C''.26.小明骑单车上学,当他骑了一段路时起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米,本次上学途中,小明一共行驶了米;(2)小明在书店停留了分钟,本次上学,小明一共用了分钟;(3)在整个上学的途中那个时间段小明骑车速度最快,最快的速度是多少?

参考答案一、选择题(每题4分,共48分)1、D【解析】

①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=BC,BC=AD,∴OE=AB=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE=S△EOC=OE•OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.2、C【解析】

根据轴对称图形与中心对称图形的概念,结合选项所给图形即可判断.【详解】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;

B、不是中心对称图形,是轴对称图形,故本选项错误;

C、既是中心对称图形,也是轴对称图形,故本选项正确;

D、是中心对称图形,不是轴对称图形,故本选项错误.

故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、A【解析】

根据CD是△ABC的边AB上的中线,且CDAB,即可得到等腰三角形,进而得出正确结论.【详解】∵CD是△ABC的边AB上的中线,∴AD=BD,故B选项正确;又∵CDAB,∴AD=CD=BD,∴∠A=∠ACD,∠B=∠BCD,∴∠ACB=180°90°,故C选项正确;∵∠ACB=90°,∴△ABC是直角三角形,故D选项正确.故选A.【点睛】本题考查了直角三角形的判定,等腰三角形性质的应用.解题的关键是熟练运用鞥要三角形的性质.4、D【解析】

根据正方形的判定方法进行解答即可.正方形的判定定理有:对角线相等的菱形;对角线互相垂直的矩形;对角线互相垂直平分且相等的四边形.【详解】解:甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;有一个角为直角的菱形的特征是:四条边都相等,四个角都是直角,则该菱形是正方形.故说法正确;

乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;有一组邻边相等的矩形的特征是:四条边都相等,四个角都是直角.则该矩形为正方形.故说法正确;

丙同学说:判定四边形的对角线相等,并且互相垂直平分;对角线相等且互相垂直平分的四边形是正方形.故说法正确;

丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等.有一个角是直角的平行四边形是矩形,有一组邻边相等的矩形是正方形.故说法正确;

故选D.【点睛】本题考查正方形的判定定理,熟记这些判定定理才能够正确做出判断.5、D【解析】

根据正方形、平行四边形、菱形和矩形的定义或性质逐个进行分析,即可得出答案.【详解】解:正方形是特殊的矩形,即是邻边相等的矩形,

也是特殊的菱形,即有是一个角为直角的菱形;

正方形、矩形和菱形都是特殊的平行四边形,

故图中阴影部分表示的图形是正方形.

故选:D.【点睛】本题考查学生对正方形、平行四边形、菱形和矩形的包含关系的理解和掌握,解题的关键是熟练掌握这四种图形的性质.6、A【解析】

根据菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,据此判断即可.【详解】A.∵AC⊥BD,BO=DO,∴AC是BD的垂直平分线,∴AB=AD,CD=BC,∴∠ABD=∠ADB,∠CBD=∠CDB,∵∠OAB=∠OBA,∴∠OAB=∠OBA=45°,∵OC与OA的关系不确定,∴无法证明四边形ABCD的形状,故此选项正确;B.∵AC⊥BD,BO=DO,∴AC是BD的垂直平分线,∴AB=AD,CD=BC,∴∠ABD=∠ADA,∠CBD=∠CDB,∵∠OBA=∠OBC,∴∠ABD=∠ADB=∠CBD=∠CDB,BD=BD,∴△ABD≌△CBD,∴AB=BC=AD=CD,∴四边形ABCD是菱形,故此选项错误;C.∵AD∥BC,∴∠DAC=∠ACB,∵∠AOD=∠BOC,BO=DO,∴△AOD≌△BOC,∴AB=BC=CD=AD,∴四边形ABCD是菱形,故此选项错误;D.∵AD=BC,BO=DO,∠BOC=∠AOD=90°,∴△AOD≌△BOC,∴AB=BC=CD=AD,∴四边形ABCD是菱形,故此选项错误.故选:A.【点睛】此题考查菱形的判定,解题关键在于掌握菱形的三种判定方法.7、D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.8、A【解析】试题分析:先提取公因式ab,整理后再把a+b的值代入计算即可.当a+b=5时,a1b+ab1=ab(a+b)=5ab=-10,解得:ab=-1.考点:因式分解的应用.9、C【解析】

设BQ=x,则由折叠的性质可得DQ=AQ=9-x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【详解】设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=1.故线段BQ的长为1.故选:C.【点睛】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.10、A【解析】

根据平行线的性质可得,再由线段垂直平分线的性质可得AD=CD,根据等腰三角形的性质可得,由三角形的内角和定理即可求得的度数.【详解】∵,∴,∵点D在AC的垂直平分线上,∴AD=CD,∴,∴.故选A.【点睛】本题考查了平行线的性质、线段垂直平分线的性质及等腰三角形的性质,正确求得是解决问题的关键.11、B【解析】

由图像位于第二、四象限得2k+10,求得k的取值范围即可得到答案.【详解】∵反比例函数y图象位于第二、四象限,∴2k+10,∴,∴k的最大整数解为-1,故选:B.【点睛】此题考查反比例函数的性质,由函数图像所在的象限确定比例系数的取值范围.12、D【解析】

根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【详解】解:一元二次方程,则它的一次项系数为-2,故选:D.【点睛】此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式为ax2+bx+c=0(a≠0).二、填空题(每题4分,共24分)13、【解析】

证明:(1)过点D作DG∥BC交AC于点G,∴∠ADG=∠B,∠AGD=∠ACB,∠FDG=∠E,∵△ABC是等边三角形,∴AB=AC,∠B=∠ACB=∠A=60°,∴∠A=∠ADG=∠AGD=60°,∴△ADG是等边三角形,∴AD=DG∵AD=CE,∴DG=CE,在△DFG与△EFC中∴△DFG≌△EFC(AAS),∴GF=FC=GC又∵

DH⊥AC,∴AH=HG=AG,∴HF=HG+GF=AG+GC=AC=故答案为:【点睛】此题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题14、3或1【解析】

分两种情况讨论:①当∠AFE=90°时,易知点F在对角线AC上,设DE=x,则AE、EF均可用x表示,在Rt△AEF中利用勾股定理构造关于x的方程即可;②当∠AEF=90°时,易知F点在BC上,且四边形EFCD是正方形,从而可得DE=CD.【详解】解:当E点与A点重合时,∠EAF的角度最大,但∠EAF小于90°,所以∠EAF不可能为90°,分两种情况讨论:①当∠AFE=90°时,如图1所示,根据折叠性质可知∠EFC=∠D=90°,∴A、F、C三点共线,即F点在AC上,∵四边形ABCD是矩形,∴AC=,∴AF=AC−CF=AC−CD=10−1=4,设DE=x,则EF=x,AE=8−x,在Rt△AEF中,利用勾股定理可得AE2=EF2+AF2,即(8−x)2=x2+42,解得x=3,即DE=3;②当∠AEF=90°时,如图2所示,则∠FED=90°,∵∠D=∠BCD=90°,DE=EF,∴四边形EFCD是正方形,∴DE=CD=1,故答案为:3或1.【点睛】本题主要考查了翻折变换,以矩形为背景考查了勾股定理、折叠的对称性,同时考查了分类讨论思想,解决这类问题首先清楚折叠能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列方程求出答案.15、【解析】

直接根据“上加下减”的平移规律求解即可.【详解】将直线向下平移4个单位长度,所得直线的解析式为,即.故答案为:.【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.16、众数【解析】

服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.【详解】解:由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故答案为:众数.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.17、一【解析】

点在第三象限的条件是:横坐标为负数,纵坐标为负数.进而判断相应的直线经过的象限【详解】解:∵点P(a,b)在第三象限,∴a<0,b<0,∴直线y=ax+b经过第二、三、四象限,不经过第一象限,故答案为:一.【点睛】此题主要考查四个象限的点坐标特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.掌握直线经过象限的特征即可求解18、4【解析】

因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【详解】由于点B在反比例函数y=的图象上,k=4故矩形OABC的面积S=|k|=4.故答案为:4【点睛】本题考查了反比例函数系数k的几何意义,掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|是解题的关键.三、解答题(共78分)19、见解析.【解析】

利用基本作图,作∠ABD的平分线交AD于E,则E到AB的距离等于ED.【详解】如图,点E为所作.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).20、见解析【解析】

根据平行四边形的性质得出∠ABC=∠ADC,AD∥BC,求出DE∥BF,∠EBC=∠AEB,根据角平分线的定义求出∠ADF=∠EBC,求出∠AEB=∠ADF,根据平行线的判定得出BE∥DF,根据平行四边形的判定得出即可.【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,AD∥BC,∴DE∥BF,∠EBC=∠AEB,∵∠ABC、∠ADC的平分线分别交AD、BC于点E、F,∴∠ADF=ADC,∠EBC=ABC,∴∠ADF=∠EBC,∴∠AEB=∠ADF,∴BE∥DF,∵DE∥BF,∴四边形BEDF是平行四边形.【点睛】本题考查了平行四边形的性质和判定,平行线的性质,角平分线的定义等知识点,能灵活运用定理进行推理是解此题的关键.21、(1)见解析(2)①1;②2【解析】试题分析:(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.试题解析:(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形;②当AM的值为2时,四边形AMDN是菱形.理由如下:∵AM=2,∴AM=AD=2,∴△AMD是等边三角形,∴AM=DM,∴平行四边形AMDN是菱形,考点:1.菱形的判定与性质;2.平行四边形的判定;3.矩形的判定.22、(1)证明见解析;(2)证明见解析.【解析】

(1)由平行四边形的性质得出∠A=∠C,由ASA证明△DAE≌△DCF,即可得出DE=DF;

(2)由全等三角形的性质得出DA=DC,即可得出结论.【详解】证明:(1)∵四边形ABCD是平行四边形∴∠A=∠C,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴DE=DF;(2)由(1)可得△DAE≌△DCF∴DA=DC,又∵四边形ABCD是平行四边形∴四边形ABCD是菱形.【点睛】本题考查了菱形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.23、(1)m=2,B(0,2);(2)C(0,-1)或(0,-3).【解析】

(1)依据一次函数图象上点的坐标特征,即可得到m的值和点B的坐标;(2)依据点C在y轴上,且△ABC的面积是1,即可得到BC=1,进而得出点C的坐标.【详解】(1)∵直线y=x+b与直线y=x交于点A(m,1),∴m=1,∴m=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论