2024届苏州市吴江区八年级下册数学期末经典模拟试题含解析_第1页
2024届苏州市吴江区八年级下册数学期末经典模拟试题含解析_第2页
2024届苏州市吴江区八年级下册数学期末经典模拟试题含解析_第3页
2024届苏州市吴江区八年级下册数学期末经典模拟试题含解析_第4页
2024届苏州市吴江区八年级下册数学期末经典模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届苏州市吴江区八年级下册数学期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在中,点,分别是边,的中点,若,则()A.3 B.6 C.9 D.122.将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=﹣3x+2 B.y=﹣3x﹣2 C.y=﹣3(x+2) D.y=﹣3(x﹣2)3.如图,已知△ABC的周长为20cm,现将△ABC沿AB方向平移2cm至△A′B′C′的位置,连结CC′.则四边形AB′C′C的周长是()A.18cm B.20cm C.22cm D.24cm4.函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A. B. C. D.5.要关于x的一元二次方程mx2+2x+1=0有两个不相等的实数根,那么m的值可以是()A.2 B.1 C.0 D.﹣16.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.AB⊥AC C.AB=CD D.∠BAD+∠ABC=180°7.湖州是“两山”理论的发源地,在一次学校组织的以“学习两山理论,建设生态文明”为主题的知识竞赛中,某班6名同学的成绩如下(单位:分):97,99,95,92,92,93,则这6名同学的成绩的中位数和众数分别为()A.93分,92分 B.94分,92分C.94分,93分 D.95分,95分8.估计的值在()A.2到3之间 B.3到4之间 C.4到5之间 D.5到6之间9.电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到电视节目的区域就越广.电视塔高(单位:)与电视节目信号的传播半径(单位:)之间存在近似关系,其中是地球半径.如果两个电视塔的高分别是,,那么它们的传播半径之比是,则式子化简为()A. B. C. D.10.下列代数式中,是分式的是()A. B. C. D.11.甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.A城和B城相距300kmB.甲先出发,乙先到达C.甲车的速度为60km/h,乙车的速度为100km/hD.6:00~7:30乙在甲前,7:30甲追上乙,7:30~9:00甲在乙前12.点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定二、填空题(每题4分,共24分)13.某市出租车的收费标准如下:起步价5元,即千米以内(含千米)收费元,超过千米的部分,每千米收费元.(不足千米按千米计算)求车费(元)与行程(千米)的关系式________.14.如图,正比例函数y=ax的图象与反比例函数y=kx的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为_________15.如图,在Rt△ABC中,∠C=90°,若AB=17,则正方形ADEC和BCFG的面积的和为________.16.如图,在中,,,,将折叠,使点与点重合,得到折痕,则的周长为_____.17.将正比例函数y=3x的图象向下平移11个单位长度后,所得函数图象的解析式为______.18.在关系式V=31-2t中,V随着t的变化而变化,其中自变量是_____,因变量是_____,当t=_____时,V=1.三、解答题(共78分)19.(8分)根据要求,解答下列问题.(1)根据要求,解答下列问题.①方程x2-2x+1=0的解为________________________;②方程x2-3x+2=0的解为________________________;③方程x2-4x+3=0的解为________________________;…………(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x+8=0的解为________________________;②关于x的方程________________________的解为x1=1,x2=n.(3)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.20.(8分)如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CD于点E,连接AE,AE⊥AD.(1)若BG=1,BC=,求EF的长度;(2)求证:CE+BE=AB.21.(8分)如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点p,取GH的中点Q,连接PQ,则△GPQ的周长最小值是__22.(10分)解不等式组并求出其整数解23.(10分)已知:A(0,1),(1)在直角坐标系中画出△ABC;(2)求△ABC的面积;(3)设点P在x轴上,且△ABP与△ABC的面积相等,请直接写出点P的坐标.24.(10分)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)探索发现如图1,当点E在菱形ABCD内部时,连接CE,BP与CE的数量关系是_______,CE与AD的位置关系是_______.(2)归纳证明证明2,当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.(3)拓展应用如图3,当点P在线段BD的延长线上时,连接BE,若AB=5,BE=13,请直接写出线段DP的长.25.(12分)用适当方法解下列方程(1)3(x﹣2)=5x(x﹣2)(2)x2+x﹣1=026.某数码专营店销售甲、乙两种品牌智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)43003600售价(元/部)48004200(1)该店销售记录显示.三月份销售甲、乙两种手机共17部,且销售甲种手机的利润恰好是销售乙种手机利润的2倍,求该店三月份售出甲种手机和乙种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共20部,要求购进乙种手机数不超过甲种手机数的,而用于购买这两种手机的资金低于81500元,请通过计算设计所有可能的进货方案.(3)在(2)的条件下,该店打算将四月份按计划购进的20部手机全部售出后,所获得利润的30%用于购买A,B两款教学仪器捐赠给某希望小学.已知购买A仪器每台300元,购买B仪器每台570元,且所捐的钱恰好用完,试问该店捐赠A,B两款仪器一共多少台?(直接写出所有可能的结果即可)

参考答案一、选择题(每题4分,共48分)1、B【解析】

三角形的中位线等于第三边的一半,那么第三边应等于中位线长的2倍.【详解】∵在中,点,分别是边,的中点且∴AC=2DE=2×3=6故选B【点睛】此题考查三角形中位线定理,解题关键在于掌握定理2、A【解析】

根据平移规律“上加下减”,即可找出平移后的函数关系式.【详解】解:根据平移的规律可知:平移后的函数关系式为y=﹣3x+1.故选:A.【点睛】本题考查了一次函数图象与几何变换,运用平移规律“左加右减,上加下减”是解题的关键.3、D【解析】

根据平移的性质求出平移前后的对应线段和对应点所连的线段的长度,即可求出四边形的周长.【详解】解:由题意,平移前后A、B、C的对应点分别为A′、B′、C′,所以BC=B′C′,BB′=CC′,∴四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=20+4=24(cm),故选D.【点睛】本题考查的是平移的性质,主要运用的知识点是:经过平移,对应点所连的线段平行且相等,对应线段平行且相等.4、B【解析】分析:根据当k>0、当k<0时,y=kx-3和y=(k≠0)经过的象限,二者一致的即为正确答案.详解:∵当k>0时,y=kx-3过一、三、四象限,反比例函数y=过一、三象限,当k<0时,y=kx-3过二、三、四象限,反比例函数y=过二、四象限,∴B正确;故选B.点睛:本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.5、D【解析】

根据一元二次方程的定义和判别式的意义得到m≠1且△=22-4m>1,然后求出两个不等式的公共部分即可.【详解】根据题意得m≠1且△=22﹣4m>1,解得m<1且m≠1.故选D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.6、B【解析】

根据平行四边形的性质逐一进行分析即可得.【详解】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,故C选项正确,不符合题意;∵AB//CD,∴∠1=∠2,故A选项正确,不符合题意;∵AD//BC,∴∠BAD+∠ABC=180°,故D选项正确,不符合题意;无法得到AB⊥AC,故B选项错误,符合题意,故选B.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质定理是解题的关键.7、B【解析】

利用中位数和众数的定义求解即可.【详解】解:将这组数据按从小到大的顺序排列为:1、1、93、95、97、99,处于中间位置的数是93,95,它们的平均数是94,那么由中位数的定义可知,这组数据的中位数是94;

在这一组数据中1出现次数最多,故众数是1.

故选:B.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两个数的平均数.8、B【解析】

利用”夹逼法“得出的范围,继而也可得出+1的范围.【详解】∵4<6<9,∴,即,∴,故选B.9、D【解析】

乘以分母的有理化因式即可完成化简.【详解】解:.故选D.【点睛】本题考查了二次根式的应用,了解二次根式的有理化因式是解答本题的关键,难度不大.10、A【解析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】A、它的分母中含有字母,是分式,故本选项正确.

B、它的分母不中含有字母,不是分式,故本选项错误.

C、它的分母中不含有字母,不是分式,故本选项错误.

D、它的分母中不含有字母,不是分式,故本选项错误.

故选:A.【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.11、D【解析】

根据整个行程中,汽车离开A城的距离y与时刻t的对应关系,即可得到正确结论.【详解】解:A、由题可得,A,B两城相距300千米,故A选项正确;B、由图可得,甲车先出发,乙车先到达B城,故B选项正确;C、甲车的平均速度为:300÷(10﹣5)=60(千米/时);乙车的平均速度为:300÷(9﹣6)=100(千米/时),故C选项正确;D、6:00~7:30甲在乙前,7:30乙追上甲,7:30~9:00乙在甲前,故D选项错误;故选:D.【点睛】此题主要考查了看函数图象,以及一次函数的应用,关键是正确从函数图象中得到正确的信息.12、B【解析】试题分析:先根据一次函数的解析式判断出函数的增减性,再比较出3与﹣1的大小,根据函数的增减性进行解答即可.解:∵直线y=﹣1x+3中,k=﹣1<0,∴此函数中y随x的增大而减小,∵3>﹣1,∴y1<y1.故选B.考点:一次函数图象上点的坐标特征.二、填空题(每题4分,共24分)13、【解析】

本题是一道分段函数,当和是由收费与路程之间的关系就可以求出结论.【详解】由题意,得

当时,

当时,

,∴,故答案为:.【点睛】本题考查了分段函数的运用,解答时求出函数的解析式是关键.14、(2,﹣3)【解析】试题分析:反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.解:根据题意,知点A与B关于原点对称,∵点A的坐标是(﹣2,3),∴B点的坐标为(2,﹣3).故答案是:(2,﹣3).点评:本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.15、189【解析】【分析】小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC1+BC1,对于Rt△ABC,由勾股定理得AB1=AC1+BC1.AB长度已知,故可以求出两正方形面积的和.【详解】正方形ADEC的面积为:AC1,正方形BCFG的面积为:BC1;在Rt△ABC中,AB1=AC1+BC1,AB=17,则AC1+BC1=189,故答案为:189.【点睛】本题考查了勾股定理的应用,勾股定理应用的前提条件是在直角三角形中.16、【解析】

首先利用勾股定理求得BC的长,然后根据折叠的性质可以得到AE=EC,则△ABE的周长=AB+BC,即可求解.【详解】解:在直角△ABC中,BC==8cm,

∵将折叠,使点与点重合,∵AE=EC,

∴△ABE的周长=AB+BE+AE=AB+BE+EC=AB+BC=6+8=14(cm).

故答案是:14cm.【点睛】本题考查了轴对称(折叠)的性质以及勾股定理,正确理解折叠中相等的线段是关键.17、【解析】

根据一次函数的上下平移规则:“上加下减”求解即可【详解】解:将正比例函数y=3x的图象向下平移个单位长度,所得的函数解析式为.故答案为:.【点睛】本题考查的是一次函数的图象与几何变换,熟知一次函数图象变换的法则是解答此题的关键.18、tV15【解析】∵在关系式V=31-2t中,V随着t的变化而变化,∴在关系式V=31-2t中,自变量是;因变量是;在V=31-2t中,由可得:,解得:,∴当时,.故答案为(1);(2);(3)15.三、解答题(共78分)19、(1)①x1=1,x2=1;②x1=1,x2=2;③x1=1,x2=1.(2)①x1=1,x2=2,②x2-(1+n)x+n=3;(1)x1=1,x2=2.【解析】

(1)观察这些方程可得,方程的共同特征为二次项系数均为1,一次性系数分别为-2、-1、-4,常数项分别为1,2,1.解的特征:一个解为1,另一个解分别是1、2、1、4、…,由此写出答案即可;(2)根据(1)的方法直接写出答案即可;(1)用配方法解方程即可.【详解】(1)①x1=1,x2=1;②x1=1,x2=2;③x1=1,x2=1.(2)①x1=1,x2=2;②x2-(1+n)x+n=3.(1)x2-9x+2=3x2-9x=-2x2-9x+=-2+(x-)2=∴x-=±.∴x1=1,x2=2.20、;证明见解析.【解析】

(1)根据勾股定理得到CG==3,推出BG=EG=1,得到CE=2,根据平行四边形的性质得到AB∥CD,于是得到结论;

(2)延长AE交BC于H,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠AHB=∠HAD,推出∠GAE=∠GCB,根据全等三角形的性质得到AG=CG,于是得到结论.【详解】,,,,,,,,四边形ABCD是平行四边形,,,,,;如图,延长AE交BC于H,四边形ABCD是平行四边形,,,,,,,在与中,,≌,,,,.【点睛】本题考查平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的识别图形是解题关键.21、2【解析】

如图,取CD的中点N,连接PN,PB,BN.首先证明PQ=PN,PB=PG,推出PQ+PG=PN+PB≥BN,求出BN即可解决问题.【详解】解:如图,取CD的中点N,连接PN,PB,BN.由翻折的性质以及对称性可知;PQ=PN,PG=PC,HG=CD=4,∵QH=QG,∴QG=2,在Rt△BCN中,BN=22∵∠CBG=90°,PC=PG,∴PB=PG=PC,∴PQ+PG=PN+PB≥BN=25,∴PQ+PG的最小值为25,

∴△GPQ的周长的最小值为2+25,故答案为2+25.【点睛】本题考查翻折变换,正方形的性质,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考填空题中的压轴题.22、;其整数解为大于的所有整数.【解析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式,得:,解不等式,得:,则不等式的解集为,不等式的整数解为大于的所有整数.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23、(1)详见解析;(2)面积为4;(3)(-6,0).(10,0);【解析】

(1)确定出点A、B、C的位置,连接AC、CB、AB即可;(2)过点C向x、y轴作垂线,垂足为D、E,△ABC的面积=四边形DOEC的面积−△ACE的面积−△BCD的面积−△AOB的面积;(3)点P在x轴上时,由△ABP的面积=4,求得:BP=8,故此点P的坐标为10,0或-6,0.【详解】(1)如图所示:

(2)过点C向x、y轴作垂线,垂足为D、E,∴四边形DOEC的面积=3×4=12,△BCD的面积=12×2×3=3,△ACE的面积=∴△ABC的面积=四边形DOEC的面积−△ACE的面积−△BCD的面积−△AOB的面积=12-3-4-1=4.(3)∵点P在x轴上,∴△ABP的面积=12AO⋅BP=4所以点P的坐标为10,0或-6,0.【点睛】本题主要考查的是点的坐标与图形的性质,明确△ABC的面积=四边形DOEC的面积−△ACE的面积−△BCD的面积−△AOB的面积是解题的关键.24、(1)BP=CE,CE⊥AD;(2)(1)中的结论仍成立.理由见解析;(3)PD=.【解析】

(1)由菱形ABCD和∠ABC=60°可证△ABC与△ACD是等边三角形,由等边△APE可得AP=AE,∠PAE=∠BAC=60°,减去公共角∠PAC得∠BAP=∠CAE,根据SAS可证得△BAP≌△CAE,故有BP=CE,∠ABP=∠ACE.由菱形对角线平分一组对角可证∠ABP=30°,故∠ACE=30°即CE平分∠ACD,由AC=CD等腰三角形三线合一可得CE⊥AD.

(2)证明过程同(1).

(3)由AB=5即△ABC为等边三角形可求得BD的长.连接CE,由(2)可求∠BCE=90°,故在Rt△BCE中,由勾股定理可求CE的长.又由(2)可得BP=CE,由DP=BP-BD即求得DP的长.【详解】解:(1)∵菱形ABCD中,∠ABC=60°

∴AB=BC=CD=AD,∠ADC=∠ABC=60°

∴△ABC、△ACD是等边三角形

∴AB=AC,AC=CD,∠BAC=∠ACD=60°

∵△APE是等边三角形

∴AP=AE,∠PAE=60°

∴∠BAC-∠PAC=∠PAE-∠PAC

即∠BAP=∠CAE

在△BAP与△CAE中

∴△BAP≌△CAE(SAS)

∴BP=CE,∠ABP=∠ACE

∵BD平分∠ABC

∴∠ACE=∠ABP=∠ABC=30°

∴CE平分∠ACD

∴CE⊥AD

故答案为:BP=CE,CE⊥AD;(2)(1)中的结论仍成立,证明如下:设AD与CE交于点O∵四边形ABCD为菱形,且∠ABC=60°∴△ABC为等边三角形.∴AB=AC,∠BAC=60°∴∠BAP=∠CAE又∵ΔAPE为等边三角形∴AP=AE在△BAP与△CAE中∴△BAP≌ΔCAE(SAS)∴BP=CE∴∠ACE=∠ABP=30°又∵∠CAD=60°∠A0C=90°∴AD⊥CE;(3)连接CE,设AC与BD相交于点O

∵AB=5

∴BC=AC=AB=5

∴AO=AC=∴BO===

∴BD=2BO=5

∵∠BCE=∠BCA+∠ACE=90°,BE=13

∴CE===12

由(2)可知,BP=CE=12

∴DP=BP-BD=12-5故答案为:(1)BP=CE,CE⊥AD;(2)(1)中的结论仍成立.理由见解析;(3)PD=.【点睛】本题考查菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理.第(2)题的证明过程可由(1)适当转化而得,第(3)题则可直接运用(2)的结论解决问题.25、(1)x1=2,x2=;(2)x=.【解析】

(1)用因式分解法解方程;(2)利用求根公式法解方程.【详解】解:(1)方程整理得:3(x﹣2)﹣5x(x﹣2)=0,分解因式得:(x﹣2)(3﹣5x)=0,解得:x1=2,x2=;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论