




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题06整式的加减专题复习一一规律探究(解析版)
第一部分德西荆析+针对训综
类型一数式规律
典例1(2021秋•南岗区校级期中)有一列数,按一定规律排列而成:-1,3,-9,27,-
81,243,…,其中某三个相邻数的和是1701,则这三个数中最小的数
是.
思路引领:设三个数中最前面的数为x,则另外两个数分别为-3x,9x,根据三个数之和
为1701,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入-3尤和9x
中,取其中最小值即可得出结论.
解:设三个数中最前面的数为x,则另外两个数分别为-3x,9x,
依题意,得:x-3X+9JC=1701,
解得:x=243,
-3x=-729,9x=2l87.
;-729<243<2187,
故答案为:-729.
总结升华:本题考查了一元一次方程的应用以及规律型:数字的变化类,找准等量关系,
正确列出一元一次方程是解题的关键.
典例2(2022秋•涟水县校级月考)观察下面三行数,并按规律填空:
①-2,4,-8,16,-32,64,,…;
②0,6,-6,18,-30,66,,…;
③-3,3,-9,15,-33,63,,….
(1)按第①行数的规律,分别写出第7和第8个数:
(2)请你分别写出第②③行的第7个数;
(3)取每行数的第9个数,计算这三个数的和.
思路引领:(1)根据已知数据都是前一个数乘2的到得,再利用第奇数个系数为负数即
可得出答案;
(2)根据3行数据关系分别分析得出即可;
(3)根据(2)得出的规律分别求出每行第9个数,再把它们相加即可.
解:⑴V@-2,4,-8,16,-32,64,
.,•第7个数是-128,第八个数是256:
(2)第②行数是第①行数加上2,第③行数正好比第①行数少1得到的,即第二行的第
7个数是-128+2=-126,第三行的第7个数是-128-1=-129;
(3)根据以上所求得出:第一行第9个数为-512,第二行第9个数为-512+2=-510,
第三行第9个数为-512-1=-513,
则这三个数的和是:-512-510-513=-1535.
总结升华:此题主要考查了数字变化规律,根据已知数据得出得数字第②行数是第①行
数加上2,第③行数正好比第①行数少1得到的是解题关键.
针对训练1
1.(2021•武汉)按照一定规律排列的〃个数:-2、4、-8、16、-32、64>若最后三
个数的和为768,则"为()
A.9B.10C.11D.12
思路引领:观察得出第附个数为(-2)”,根据最后三个数的和为768,列出方程,求解
即可.
解:由题意,得第〃个数为(-2)”,
那么(-2)“-2+(-2)«->+(-2)"=768,
当〃为偶数:整理得出:3X2"-2=768,解得:»=10;
当〃为奇数:整理得出:-3X2"-2=768,则求不出整数.
故选:B.
总结升华:此题考查规律型:数字的变化类,找出数字的变化规律,得出第〃个数为(-
2)”是解决问题的关键.
2.(2021秋•新洲区期中)有一串数:-2018,-2014,-2010,-2006,-2002…按一定
的规律排列,那么这串数中前个数的和最小.
思路引领:根据题目中数据的特点,可以写出第八个数,然后令第〃个数等于0,即可
得到相应的〃的值,从而可以解答本题.
解:•.•有一串数:-2018,-2014,-2010,-2006,-2002-
这串数的第n个数为-2018+4(n-1)=4/7-2022,
当4”-2022=0时,
解得,”=505…2,
...那么这串数中前505个数的和最小,
故答案为:505.
总结升华:本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,
求出第多少个数的值为0.
类型二数阵、数表规律
典例3(2020秋•江汉区月考)将全体正偶数排成一个三角形数阵:按照以上规律排列,第
25行第20个数是
2
46
81012
14161820
2224262830
思路引领:观察数字的变化,第〃行有〃个偶数,求出第〃行的第一个数,结论可得.
解:观察数字的变化可知:第〃行有〃个偶数.
;第1行的第一个数是:2=lX0+2;
第2行第一个数是:4=2Xl+2;
第3行第一个数是:8=3X2+2;
第4行第一个数是:14=4X3+2;
...第〃行第一个数是:n(n-I)+2.
.•.第25行第一个数是:25X24+2=602.
:.第25行第20个数是:602+2X19=640.
故答案为:640.
总结升华:本题主要考查了数字的变化的规律,有理数的混合运算.准确找出数字的变
化规律是解题的关键.
典例4(2019秋•江汉区期中)有这样一对数,如下表,第"+3个数比第〃个数大2(其中
〃是正整数)
第1个第2个第3个第4个第5个
b
(1)第5个数表示为—;第7个数表示为—;
(2)若第10个数是5,第11个数是8,第12个数为9,贝Ua=,b=___,c=
(3)第2019个数可表示为.
思路引领:(1)根据第〃+3个数比第〃个数大2,即可求解;
(2)根据第〃+3个数比第"个数大2,分别求出第10、11、12个数即可求出结果;
(3)根据数字的变化规律,
解:(1),•第〃+3个数比第〃个数大2,
...第5个数比第2个数大2,.•.第5个数为6+2.
•.•第4个数比第1个数大2,.•.第4个数为a+2,
.•.第7个数比第4个数大2,.•.第7个数为a+4.
故答案为/,+2、a+4.
(2),.,第10个数为a+6,
第11个数为b+6,
第12个数为c+6,
<7+6=5>/>+6=8,c+6=9
解得。=-1,b—2,c—3.
故答案为-1、2、3.
(3)第一组数是八b、c
第二组数是。+2、6+2、c+2
第三组数是〃+4、8+4、c+4
第四组数是。+6、b+6、c+6
第〃组数的第三个数是c+(2〃-2)
20194-3=673,
第2019个数是第673组的第三个数,
.•.第673组的第三个数是C+2X673-2=c+1344.
故答案为c+1344.
总结升华:本题考查了数字的变化类,解决本题的关键是寻找数字的变化规律.
针对训练2
1.(2021秋•播州区期中)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行
起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线
之间的一列数:1,3,6,10,15,…,我们把第一个数记为ai,第二个数记为“2,第
三个数记为43,…,第”个数记为〃",则46=><22020=
从而可以数字的变化特点,然后即可
得到46和02020的值.
解:由题意可得,
42=1+2=3,
43=1+2+3=6,
“4=1+2+3+4=10,
。5=1+2+3+4+5=15,
・\如=1+2+3+…+〃=M竽2
当〃=6时,。6=零=21,
当“=2020时,02020=202°22°21=2041210,
故答案为:21,2041210.
总结升华:本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,
求出所求项的值.
2.(2018秋•江夏区期中)已知一列数:1、-2、3、-4、5、-6、……,将这列数排成下
列形式:
1
-23
-45-6
7-89-10
11-1213-1415
按照上述规律排列下去,第10行数的第1个数是()
A.-46B.-36C.37D.45
思路引领:观察排列规律得到第1行有1个数,第2行有2个数,第3行有1个数,…,
第9行有9个数,则可计算出前9行的数的个数45,而数字的序号为偶数时,数字为负
数,于是可判断第10行数的第1个数为-46.
故选A.
解:第1行有1个数,第2行有2个数,第3行有1个数,…,第9行有9个数,
所以前9行的数的个数为1+2+3+…+9=45,
而数字的序号为奇数时,数字为正数,数字的序号为偶数时,数字为负数,
所以第10行数的第1个数为-46.
故选:A.
总结升华:本题考查了规律型:数字的变化类:认真观察、仔细思考,利用数字与序号
数的关系解决这类问题.
3.(2017秋•海淀区校级期中)如图,从左边第一个格子开始向右数,在每个小格子中都填
入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.
(1)可求得x=,第2017个格子中的数为一.
(2)判断:前机个格子中所填整数之和是否可能为2018?若能,求出〃?的值,若不能,
请说明理由.
(3)若取前3格子中的任意两个数记作人b,且那么所有的|a-臼的和可以通过
计算19-*|+|9-☆1+1★-得到,其结果为—;若。、〃为前19格子中的任意两个
数记作a、b,且则所有的|a-臼的和为.
思路引领:(1)根据三个相邻格子的整数的和相等列式求出x的值,再根据第9个数是2
可得☆=2,然后找出格子中的数每3个为一个循环组依次循环,在用2014除以3,根据
余数的情况确定与第几个数相同即可得解;
(2)可先计算出这三个数的和,再照规律计算.
(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.
解:(1)•••任意三个相邻格子中所填整数之和都相等,
9+^+☆=★+☆+%»
解得:x=9,
★+☆+%=☆+%-6,
/.★=-6,
所以,数据从左到右依次为9、-6、☆、9、-6、☆、…,
第9个数与第三个数相同,即☆=2,
所以,每3个数“9、-6、2”为一个循环组依次循环,
V20174-3=672—l,
.•.第2017个格子中的整数与第1个格子中的数相同,为9.
故答案为:9,9;
(2)9-6+2=5,2018=2015+3=2015+9-6,2015+5=403,403X3=1209,
所以是第1209+1+1=1211个数,即m=12U,
故前1211个数的和为2018;
(3)取前3格子中的任意两个数,记作a、b,且aNb,
二所有的|a-目的和为:|9-(-6)|+|9-2|+|-6-2|=30.
•.•由于是三个数重复出现,那么前19个格子中,这三个数,
9出现了7次,-6和2各出现了6次.
...代入式子可得:
19-(-6)1X7X6+19-2|X7X6+|2-(-6)|X6X6=1212.
故答案为:30,1212.
总结升华:本题主要考查数字的变化规律,解答的关键是找出数字间的关系,得出规律.
类型三图形的增长规律
典例4(2021•汉川市模拟)古希腊著名的毕达哥拉斯学派把1、3、6、10、…,这样的数称
为“三角形数”,而把1、4、9、16、…,这样的数称为“正方形数”.从图中可以发现,
任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.则第10个图形
中右下方的‘'三角形数”中的所有点数是—.
4=1+39=3+616=6+10
图1图2图3
思路引领:观察图象中点的个数的规律有第一个图形是4=1+3,第二个图形是9=3+6,
第三个图形是16=6+10,…则按照此规律得到第10个图形的规律即可.
解:•.,第1个图形是4=1+(1+2),
第2个图形是9=(1+2)+(1+2+3),
第3个图形是16=(1+2+3)+(1+2+3+4),
.•.第10个图形是“2=([+2+3+4+5+6+7+8+9+10)+(1+2+3+4+5+6+7+8+9+10+11)=
55+66.
故答案为:66.
总结升华:此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或
按规律变化的因素,然后推广到一般情况.
典例5(2020秋•江夏区期中)按照如图所示的方法排列黑色小正方形地砖,则第14个图案
中黑色小正方形地砖的数量是()
思路引领:观察图形可知,黑色与白色的地砖的个数的和是连续奇数的平方,而黑色地
砖比白色地砖多1个,求出第〃个图案中的黑色与白色地砖的和,然后求出黑色地砖的
块数,再把"=14代入进行计算即可.
解:第1个图案只有(2X1-1)2=i=1块黑色地砖,
第2个图案有黑色与白色地砖共(2X2-1)2=32=9,其中黑色的有&(9+1)=5块,
第3个图案有黑色与白色地砖共(2X3-1)2=52=25,其中黑色的有-(25+1)=13块,
2
第〃个图案有黑色与白色地砖共(2〃-I)2,其中黑色的有j(2n-1)2+1],
1r1
当〃=14时,黑色地破的块数有鼻X](2X14-1)2+1]=|X730=365.
故选:C.
总结升华:本题考查图形的变化规律,观察图形找出黑色与白色地砖的总块数与图案序
号之间的关系是解题的关键.
针对训练3
1.(2021秋•中山市期中)观察下列图中所示的一系列图形,它们是按一定规律排列的,依
照此规律,第10个图形共有个O.
o
o
Oo
OO。OO
。%OOoooooooo
第
第
个o
第4个
思路引领:观察图形的变化先得前几个图形中圆圈的个数,可以发现规律:第n个图形
共有(3〃+1)个O,进而可得结果.
解:观察图形的变化可知:
第1个图形共有IX3+1=4个O;
第2个图形共有2X3+1=7个O;
第3个图形共有3X3+1=10个。:
所以第〃个图形共有(3〃+1)个。;
所以第10个图形共有10X3+1=31个O;
故答案为:31.
总结升华:本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找
规律.
2.(2018秋•矫口区期中)对于大于或等于2的整数的平方进行如下“分裂”,如下分别将
2\32、42分裂成从1开始的连续奇数的和,依此规律,则20182的分裂数中最大的奇数
是
\
-一
-
一/
、
思路引领:由题意可知:每个数中所分解的最大的奇数是前边底数的2倍减去1.由此
得出答案即可.
解:自然数“2的分裂数中最大的奇数是2"-1.
20182分裂的数中最大的奇数是2X2018-1=4035,
故答案为:4035.
总结升华:此题考查数字的变化规律,注意根据具体的数值进行分析分解的最大的奇数
和底数的规律,从而推广到一般.
3.(2022•仙居县校级开学)如图,都是由棱长为1的正方体叠成的立体图形,例如第(1)
个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正
方体叠成,依次规律,第(10)个图形由()个正方体叠成.
回击而
(1)(2)(3)
A.120B.165
思路引领:根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+…+
吗曲,据此可得第(6)个图形中正方体的个数.
解:由图可得:
第(1)个图形中正方体的个数为1;
第(2)个图形中正方体的个数为4=1+3;
第(3)个图形中正方体的个数为10=1+3+6:
第(4)个图形中正方体的个数为20=1+3+6+10;
故第n个图形中的正方体的个数为1+3+6+…+鸣曲,
.♦.第10个图形中正方体的个数为1+3+6+10+15+21+28+36+45+55=220.
故选:C.
总结升华:本题主要考查了图形变化类问题,解决问题的关键是依据图形得到变换规
律.解题时注意:第〃个图形中的正方体的个数为1+3+6+…+吟
类型四乘方规律
典例6(2022•内蒙古)观察下列等式:7°=1,71=7,72=49,73=343,74=2401,75=16807,…,
根据其中的规律可得7°+7〃72+…+72°22的结果的个位数字是()
A.0B.1C.7D.8
思路引领:由已知可得7"的尾数1,7,9,3循环,则70+7〔+…+72°22的结果的个位数
字与70+7172的个位数字相同,即可求解.
解:,.,7°=1,7'=7,72=49,73=343,74=2401,75=16807,…
.♦.7"的尾数1,7,9,3循环,
.,.7°+7'+72+73的个位数字是0,
V2023^-4=505-3,
.,.70+7'+-+72022的结果的个位数字与70+7'+72的个位数字相同,
.,.7°+7|+-+72022的结果的个位数字是7,
故选:C.
总结升华:本题考查数的尾数特征,能够通过所给数的特点,确定尾数的循环规律是解
题的关键.
典例7(2022秋•东港区校级月考)求1+2+2?+23+.......+22007的值,可令5=1+2+22+23+........
+22007,则2s=2+22+23+24+......+22008,Hilt25-5=22<X)9-1,即5=22°"-1,仿照以
32023_I
上推理,计算出1+3+32+33+……+32°22值为-------.
—2-
思路引领:令S=1+3+32+3?+.......+32022,则35=3+32+33+........+32023,作差求出$即可.
解:令5=1+3+32+3?+........+32022,
贝3S=3+32+33+........+3”)23,
/.35-S=32023-1,
o2023_1
则S=~2~,
O20231
即1+3+32+33+……+32。22=
32023T
故答案为:一I—.
2
总结升华:本题考查数字的变化规律,通过观察所给的求和方法,灵活应用此方法求和
是解题的关键.
针对训练4
1.(2021秋•罗湖区期中)观察等式:2+2?=23-2;2+22+23=24-2;2+22+23+24=-2;........,
1000
已知按一定规律排列的一组数:2501,2502,2503,……,2999,2.若25°°=",用含〃
的式子表示这组数之和是()
A.2a2-2"B.2a'0-2a5-2C.2a2-aD.2a20-a
思路引领:把所求的数列的各数提取25°°,可得:2500X(2+22+23+-+2499+2500),利用
所给的等式的规律求解即可.
解::2+22=23-2;2+22+23=24-2:2+22+23+24=25-2;…,
.,.2+22+23+—+2Z,=2,,+1-2,
A2501+2502+2503+...+2999+21000
=2500X(2+22+23+—+2499+2500)
=2500x(2500+1-2)
=2500X(2X2500-2),
':25OO=a,
原式=a(2a-2)
—2a2-2a.
故选:A.
总结升华:本题主要考查了规律型:数字的变化类,有理数的混合运算,解答的关键是
由所给的等式总结出规律.
2.(2019秋•汾阳市期末)任意大于1的正整数m的三次基均可“分裂”成m个连续奇数
的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若加分裂后,其中
有一个奇数是203,则,*的值是()
A.13B.14C.15D.16
思路引领:观察可知,分裂成的奇数的个数与底数相同,然后求出到小的所有奇数的个
数的表达式,再求出奇数203的是从3开始的第101个数,然后确定出101所在的范围
即可得解.
解:•••底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4
个奇数,
I7分裂成机个奇数,
所以,到小的奇数的个数为:2+3+4+…+5=6+2尸1),
V2n+1=203,n=IOI,
,奇数203是从3开始的第101个奇数,
..(13+2)(13-1)(14+2)(14-1),
♦—7V*,—IU4,
22
.♦.第101个奇数是底数为14的数的立方分裂的奇数的其中一个,
即,”=14.
故选:B.
总结升华:本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题
的关键,还要熟练掌握求和公式.
3.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图所示:
则第4个方框中x+y的值是()
A.11B.12C.13D.14
思路引领:找出求解过程图中的规律,利用此规律求得〃?,小x,y的值,将相应字母的
值代入即可得出结论.
解:求解过程图中的表格中的规律为:
第一行前两个格为十位数字的平方,后两个格为个位数字的平方,平方后不是两位数,
十位数字用0代替,
第二行从第二个格开始表示的是两位数中个位数字与十位数字的乘积的2倍,
第三行为从右开始将一二行数字相加的和,足10进I,
:62=36,
••3»几=6,
76X7X2=84,
...x=8,y=4,
.\x+y=12.
故选:B.
总结升华:本题主要考查了有理数的乘方,求代数式的值,找出求解过程图中的规律是
解题的关键.
类型五幻方规律
典例8(2021秋•江阴市期中)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻
圆”游戏,现在将-1、2、-3、4、-5,6、-7、8分别填入图中的圆圈内,使横、竖
以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中
a+b的值为()
C.-1或-4D.1或-1
思路引领:由于八个数的和是4,所以需满足两个圈的和是2,横、竖的和也是2.列等
式可得结论.
解:设小圈上的数为c,大圈上的数为",
-1+2-3+47+6-7+8=4,
•••横、竖以及内外两圈上的4个数字之和都相等,
两个圈的和是2,横、竖的和也是2,
则-7+6+%+8=2,得b=-5,
6+4+b+c—2,得c=-3,
a+c+4+d=2,a+d=1.
当a=-1时,d=2,则a+b--1-5--6,
当“=2时,d=-1,则a+b=2-5=-3,
故选:A.
总结升华:本题考查了有理数的加法.解决本题的关键是知道横竖两个圈的和都是2.
典例9(2020•冷水江市一模)我国的《洛书》中记载着世界上最古老的一个幻方:将1〜9
这九个数字填入3X3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图
的幻方中,m=.
思路引领:根据“每行、每列、每条对角线上的三个数之和相等”解答即可.
解:1+2+3+…+9=45,
根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的
三个数之和都等于15,
第一列第三个数为:15-2-5=8,
第三列第二个数为:15-3-5=7,第三个数为:15-2-7=6,如图所示:
.,.m—15-8-6=1.故答案为:1.
总结升华:本题考查数的特点和有理数的加法,抓住每行、每列、每条对角线上的三个
数之和相等,数的对称性是解题的关键.
针对训练5
1.(2021秋•南安市期中)现有七个数-I,-2,-2,-4,-4,-8,-8将它们填入图
1(3个圆两两相交分成7个部分)中,使得每个圆内部的4个数之积相等,设这个积为
m,如图2给出了一种填法,此时机=64,在所有的填法中,一的最大值为256.
思路引领:观察图象,可得这7个数,有的被乘了1次,2次,3次.要使得每个圆内部
的4个数之积相等且最大所以-8,-8必须放在被乘两次的位置.与-8,-8同圆的只
能为-I,-4,其中-4放在中心位置,可得用=256
解:观察图象,可得这7个数,有的被乘了1次,2次,3次.要使得每个圆内部的4个
数之积相等艮最大所以-8,-8必须放在被乘两次的位置.与-8,-8同圆的只能为-
1,-4,其中-4放在中心位置,如图
图1
:.m=(-8)X(-8)X(-1)X(-4)=256
总结升华:本题考查有理数的乘法,关键是找到两个(-8)的位置.
2.将9个数填入幻方的九个方格中,使处于同一横行、同一竖列、同一斜对角线上的三个
数的和相等,如表一:按此规律将满足条件的另外6个数填入表二,则表二中这9个数
的和为—(用含。的整式表示).
表一
思路引领:根据同一横行、同一竖列、同一斜对角线上的三个数的和相等作出图形,根
据题意列出关于。与x的方程,可得x=a+2,进一步求出这9个数的和即可.
解:如图所示:
4+x+a-1+。+3=。-3+a+l+a+3,
解得x=a-5>
a+3+x+a+3—2a+6+a~5=3。+1,
3(3a+l)=9a+3.
故答案为:9“+3.
总结升华:此题考查了列代数式,整式的加减,熟练掌握运算法则是解本题的关键.
类型六其他规律
典例10(2019秋•武昌区校级期中)某初中七(5)班学生军训排列成7X7=49人的方阵,
做了一个游戏,起初全体学生站立,教官每次任意点4个不同学号的学生,被点到的学
生,站立的蹲下,蹲下的站立,且学生都正确完成指令,同一名学生可以多次被点,则
15次点名后蹲下的学生人数可能是()
A.3B.27
C.49D.以上都不可能
思路引领:假设站立记为“+1”,则蹲下为“-1”.原来49个“+1”,乘积为“+1”,每
次改变其中的4个数,即每次运算乘以4个1”,即乘以了“+1”,乘积为“+1”,即
可得出结论.
解:假设站立记为“+1",则蹲下为“-1”.
原来49个“+1”,乘积为“+1”,每次改变其中的4个数,
即每次运算乘以4个“-1”,即乘以了“+1”,
15次点名后,乘积仍然是“+1”,
所以,最后出现“-1”的个数为偶数,
即蹲下的学生人数为偶数,
选项A,B,C都不符合题意,
故选:D.
总结升华:此题主要考查了奇数与偶数,有理数乘法中积的符号的判断,解决本题的关
键是利用有理数的乘法进行解决.
针对训练6
1.(2019秋•研口区期中)把几个不同的数用大括号括起来,相邻两个数之间用逗号隔开,
如:{1,2};{1,4,7};…我们称之为集合,其中的每一个数称为该集合的元素.规定:
当整数x是集合的一个元素时,100-x也必是这个集合的元素,这样的集合又称为黄金
集合,例如{7,101}就是一个黄金集合.若一个黄金集合所有元素之和为整数,小且
1180<^<1260,则该黄金集的元素的个数是()
A.23B.24C.24或25D.26
思路引领:由黄金集合的定义,可知一个整数是无,则必有另一个整数是100-x,则这
两个整数的和为x+100-x=100,只需判断1180<〃?V1260内100的个数即可求解.
解:在黄金集合中一个整数是x,则必有另一个整数是100-x,
.••两个整数的和为x+100-x=100,
由题意可知,U80<m<1260时,
100X12=1200,100X13=1300,
...这个黄金集合的个数是24或25个;
故选:C.
总结升华:本题考查有理数,新定义;理解题意,通过两个对应元素和的特点,结合m
的取值范围,进而确定元素个数是解题关键.
第二部分专题理优训练
11123111
1.观察下面一列数:1,一,2,1,3,4,一,1,2,5,一,…(已写出了
23432526
第1至第16个数).
(1)第7,第8,第9,第10个数的积是—,前16个数的积是—;
(2)按此规律,第30个数是一;
(3)在上面这列数中,从左起第巾个数记为F(加),当尸(〃?)=薪时,求加的值.
思路引领:(1)根据规律直接写出数计算即可;
(2)根据题意将数字从左边开始分别以1个数,2个数,3个数,…,为一组,每组数
据的积为1,且分子递增1,分母递减1,然后根据规律得出第30个数即可;
(3)根据F(%)=募判断出F(俄)是第几组第几个数即可得出m的值.
123
解:(1)根据题意知,第7,第8,第9,第10个数的积是-x-x-x4=l,前16个数
432
一口1112312411
的积是IX(-x2)X(-x1x3)X(-x-x-x4)X(-x-xlxx5)X^=,
2343254526Z6
1
故答案为:1,二;
(2)由(1)知,将数字从左边开始分别以1个数,2个数,3个数,…,为一组,每组
数据的积为1,且分子递增1,分母递减1,
V1+2+3+4+5+6+7=28,
.•.第30个数在第8组的第2个数,即3=4
8-17
故答案为:意
9
(3)':F(w)=2020+9=2029,
:.F(m)是第2028组笫9个数,前面有2027组数,
1+2027
(1+2+3+4+--+2027)+9=X2027+9=2055387.
总结升华:本题主要考查数字的变化规律,根据数字的变化分组分析规律是解题的关键.
2.(2021秋•丹江口市期中)观察一列数:1,-2,3,-4,5,-6,7,将这列数排
成下列形式:
(1)在表中,第12行第6个数是;
(2)在表中,“2021”是其中的第行,第个数;
(3)将表中第,行的最后一个数记为3,如第1行的最后一个数记为m,即m=l,第2
行的最后一个数记为。2,即42=3,如此下去,。3=-6,“4=-10,…,第”行的最后
一个数记为an,则用含〃的式子表示|即|为;
1111111111
(4)在(3)的条件下,计算一+—————+—+—————+—+----
。10
1
-23
-45-6
7-89-10
11-1213-1415
思路引领:(1)先求出前11行一共有66,即可求解;
(2)求出前〃行共有个数,再求前63行共有2016个数,即可求2021的位置;
(3)由题意可得,1+2+3+......+〃="(罗,即可求解;
(4)原式=2(1一*+±4+寺-*+....+寺一卷+余一春),再运算即可.
解:(1)由题可知,第一行1个数,第二行2个数,…,第〃行〃个数,
.•.前11行一共有1+2+3+…+11=66,
.•.第12行第一个数是67,
.•.第12行第6个数是-72,
故答案为:-72;
(2)由题意可得,前〃行共有空罗个数,
...当〃=63时,前63行共有2016个数,
•*.2021时第64行的第5个数,
故答案为:64,5;
(3)由题意可得,1+2+3+......+〃=吗曲,
...闻=或抖
n(n+l)
故答案为:-;
1111111111
(4)—十—————+—+----—+—+——
02a3a6a7a8a9a10
111111
=T+3+6+W+……+45+55
11111
=2^1x2+2x3+3x4+....+9x10+10x11)
11111111
2++++
=---一------
223349
1010
=2(1-备)
20
=IT
总结升华:本题考查数字的变化规律,根据题意探索数字的排列规律是解的关键.
3.(2022•东莞市校级一模)找出以下图形变化的规律,则第2022个图形中黑色正方形的数
量是3033.
■o■□口■□■□o
■■■■■■■■■■■■■■■
(1)(2)(3)(4)(5)
思路引领:仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.
解:•••当〃为偶数时第"个图形中黑色正方形的数量为个;当〃为奇数时第〃个
图形中黑色正方形的数量为(,7+1)个,
...当“=2022时,黑色正方形的个数为2022+1011=3033个.
故答案为:3033.
总结升华:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并正确的找到
规律.
4.(2020秋•西城区校级期中)古希腊毕达格拉斯学派的数学家常用小石子在沙滩上摆成各
种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,….由于这些数
能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的
数为正方形数.
(1)请你写出一个既是三角形数又是正方形数的自然数.
(2)类似地,我们将火边形数中第〃个数记为N(〃,k)&23).以下列出了部分左边
形数中第〃个数的表达式:
三角形数:N(〃,3)=^n2+
正方形数:N(小4)=”2
五边形数:N(〃,5)一]
六边形数:N(〃,6)=2n2-n
根据以上信息,得出N(小k)=.(用含有〃和人的代数式表示)
13610
图1
14916
图2
思路引领:(1)由题意得第8个图的三角形数是36,所以既是三角形数又是正方形数,
且大于1的最小正整数为36;
(2)由已知等式进行变形进而可推出结果.
1
解:(1)由题意第8个图的三角形数为&X8(8+1)=36,
.•.既是三角形数乂是正方形数,且大于1的最小正整数为36,
故答案为36.
2
(2):N(n,3)==(3-2)n+(4-3)n)
N(〃,4)2n^0xn=(4-2)^4-(4-4)n)
N"5)=/一如生笑吐包,
2
NCn,6)=2»-n==(6-2)n^(4-6)n(
由此推断出N(",k)=♦二2H:(4/里(%>3).
」"•田(fc-2)n2+(4-/c)n
故答案为f:-——1——723)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CAS 907-2024面向分布式天然气供应的智能化系统技术要求
- T/CCOA 76-2023浓香核桃油
- 北京市消费类预付费服务交易合同行为指引(试行)(标准版)5篇
- 有关印刷品订货合同7篇
- 专业版抵押房子借款协议8篇
- T/ZRCX 004-2018集成灶
- 眼科疾病常用穴位
- T/ZHCA 105-2022灵芝子实体
- 癫痫预防与急救
- 健康促进单位创建课件
- 2024年浙江省中考社会试卷真题(含标准答案及评分标准)
- 第五版-FMEA培训教材-新版
- NB-T32036-2017光伏发电工程达标投产验收规程
- 食品安全与日常饮食智慧树知到期末考试答案章节答案2024年中国农业大学
- 七人学生小品《如此课堂》剧本台词手稿
- 吊具与索具点检表
- microRNA研究 ppt课件
- 甲醇及制氢装置预试车方案
- 单片机课件第8章存储器的扩展
- 分子的立体构型
- 英文版简易-电商送货单-产品随行单模板
评论
0/150
提交评论