2024年重庆市秀山县八年级下册数学期末检测模拟试题含解析_第1页
2024年重庆市秀山县八年级下册数学期末检测模拟试题含解析_第2页
2024年重庆市秀山县八年级下册数学期末检测模拟试题含解析_第3页
2024年重庆市秀山县八年级下册数学期末检测模拟试题含解析_第4页
2024年重庆市秀山县八年级下册数学期末检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年重庆市秀山县八年级下册数学期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.实数a,b在数轴上的位置如图所示,则化简a2﹣b2﹣A.2b B.2a C.2(b﹣a) D.02.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.等腰梯形 C.正方形 D.平行四边形3.下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形4.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5cm B.4.8cm C.4.6cm D.4cm5.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、BD、CD、AC的中点,则对四边形EFGH表述最确切的是()A.四边形EFGH是矩形 B.四边形EFGH是菱形C.四边形EFGH是正方形 D.四边形EFGH是平行四边形6.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是(

).A.8% B.9% C.10% D.11%7.如图,已知正比例函数与一次函数的图象交于点.下面有四个结论:①;②;③当时,;④当时,.其中正确的是()A.①② B.②④ C.③④ D.①③8.如图,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于点E,交BC于点F,连接AF,则∠AFC的度数()A.B.C.D.9.如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为()A.4 B.9 C.10 D.4+10.如果式子有意义,那么x的范围在数轴上表示为()A. B.C. D.二、填空题(每小题3分,共24分)11.已知一次函数y=x+4的图象经过点(m,6),则m=_____.12.如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.13.已知,则的值等于__________.14.如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是_____.15.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8cm,正方形A的面积是10cm1,B的面积是11cm1,C的面积是13cm1,则D的面积为____cm1.16.某初中校女子排球队队员的年龄分布:年龄/(岁)13141516频数1452该校女子排球队队员的平均年龄是_____岁.(结果精确到0.1)17.实施素质教育以来,某中学立足于学生的终身发展,大力开发课程资源,在七年级设立六个课外学习小组,下面是七年级学生参加六个学习小组的统计表和扇形统计图,请你根据图表中提供的信息回答下列问题.学习小组

体育

美术

科技

音乐

写作

奥数

人数

72

36

54

18

(1)七年级共有学生人;(2)在表格中的空格处填上相应的数字;(3)表格中所提供的六个数据的中位数是;(4)众数是.18.如图,平面直角坐标系中,平行四边形的顶点,边落在正半轴上,为线段上一点,过点分别作,交平行四边形各边如图.若反比例函数的图象经过点,四边形的面积为,则的值为__.三、解答题(共66分)19.(10分)黄岩岛是我国南沙群岛的一个小岛.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一艘外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.如图是渔政船及渔船与港口的距离s(海里)和渔船离开港口的时间t(时)之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离开港口的距离s和渔船离开港口的时间t之间的函数关系式;(2)已知两船相距不超过30海里时,可以用对讲机通话,在渔政船驶往黄岩岛的过程中,求两船可以用对讲机通话的时间长?20.(6分)计算(1)计算:(2)21.(6分)如图,在□ABCD中,对角线AC、BD相交于点O,过点O的直线分别交边AD、BC于E、F,(1)根据题意补全图形;(2)求证:DE=BF.22.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.23.(8分)某物流公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量yA(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求yB关于x的函数解析式;(2)如果A,B两种机器人连续搬运5小时,那么B种机器人比A种机器人多搬运了多少千克?24.(8分)计算:(1);(2).25.(10分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D的坐标;(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标.26.(10分)如图,对称轴为直线x=1的抛物线经过A(﹣1,0)、C(0,3)两点,与x轴的另一个交点为B,点D在y轴上,且OB=3OD(1)求该抛物线的表达式;(2)设该抛物线上的一个动点P的横坐标为t①当0<t<3时,求四边形CDBP的面积S与t的函数关系式,并求出S的最大值;②点Q在直线BC上,若以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,请求出所有符合条件的点P的坐标.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

由图可知-1<b<0<a<1,由a2=|a|【详解】解:由图可知-1<b<0<a<1,原式=|a|-|b|-|a-b|=a+b-a+b=2b,故选择A.【点睛】本题考查了含二次根式的式子的化简.2、C【解析】

根据轴对称图形和中心对称图形的概念,即可求解.【详解】解:A、B都只是轴对称图形;C、既是轴对称图形,又是中心对称图形;D、只是中心对称图形.故选:C.【点睛】掌握好中心对称图形与轴对称图形的概念是解题的关键.3、A【解析】

逐一对选项进行分析即可.【详解】A.对角线互相平分的四边形是平行四边形,故该选项正确;B.对角线相等且平分的四边形是矩形,故该选项错误;C.对角线互相垂直平分的四边形是菱形,故该选项错误;D.对角线相等且互相垂直平分的四边形是正方形,故该选项错误.故选:A.【点睛】本题主要考查真假命题,掌握特殊四边形的判定方法是解题的关键.4、A【解析】

作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【详解】解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.

由题意知:AD∥BC,AB∥CD,

∴四边形ABCD是平行四边形,

∵两个矩形等宽,

∴AR=AS,

∵AR•BC=AS•CD,

∴BC=CD,

∴平行四边形ABCD是菱形,

∴AC⊥BD,

在Rt△AOB中,∵OA=3,OB=4,

∴AB=32+42=5,【点睛】本题考查菱形的判定、勾股定理,解题的关键是掌握一组邻边相等的平行四边形是菱形.5、B【解析】

根据三角形中位线定理得到EH=BC,EH∥BC,得到四边形EFGH是平行四边形,根据菱形的判定定理解答即可.【详解】解:∵点E、H分别是AB、AC的中点,∴EH=BC,EH∥BC,同理,EF=AD,EF∥AD,HG=AD,HG∥AD,∴EF=HG,EF∥HD,∴四边形EFGH是平行四边形,∵AD=BC,∴EF=EH,∴平行四边形EFGH是菱形,故选B.【点睛】本题考查的是中点四边形的概念和性质、掌握三角形中位线定理、菱形的判定定理是解题的关键.6、C【解析】分析:设平均每次下调的百分率为x,则两次降价后的价格为6000(1-x)2,根据降低率问题的数量关系建立方程求出其解即可.详解:设平均每次下调的百分率为x,由题意,得6000(1-x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选C.点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.7、D【解析】

利用两函数图象结合与坐标轴交点进而分别分析得出答案.【详解】如图所示:

∵y1=ax,经过第一、三象限,

∴a>0,故①正确;

∵与y轴交在正半轴,

∴b>0,

故②错误;

∵正比例函数y1=ax,经过原点,

∴当x<0时,函数图像位于x轴下方,∴y1<0;故③正确;

当x>2时,y1>y2,故④错误.

故选:D.【点睛】此题考查一次函数与一元一次不等式,正确利用数形结合分析是解题关键.8、C【解析】

先由等腰三角形的性质求出∠B的度数,再由垂直平分线的性质可得出∠BAF=∠B,由三角形内角与外角的关系即可解答.【详解】解:∵AB=AC,∠BAC=120°,∴∠B=(180°-120°)÷2=30°,∵EF垂直平分AB,∴BF=AF,∴∠BAF=∠B=30°,∴∠AFC=∠BAF+∠B=60°.故选:C.【点睛】本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.也考查了等腰三角形的性质及三角形外角的性质.9、D【解析】

根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线AE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是2,当点P与点B重合时,△ADP的面积是5,由B到C运动的路程为2,∴=5,解得,AD=5,又∵BC∥AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=2,∴DE=AD−AE=5−2=3,∴CD==,∴点P从开始到停止运动的总路程为:AB+BC+CD=2+2+=4+,故选D.【点睛】此题考查动点问题的函数图象,解题关键在于利用勾股定理进行计算10、D【解析】

根据二次根式有意义的条件可得x﹣1≥0,求出不等式的解集,再在数轴上表示.【详解】由题意得:x﹣1≥0,解得:x≥1,在数轴上表示为:故选D.【点睛】本题主要考查了二次根式有意义的条件,以及在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.二、填空题(每小题3分,共24分)11、1【解析】试题分析:直接把点(m,6)代入一次函数y=x+4即可求解.解:∵一次函数y=x+4的图象经过点(m,6),∴把点(m,6)代入一次函数y=x+4得m+4=6解得:m=1.故答案为1.12、(4,0)【解析】

根据抛物线p=ax2−10ax+8(a>0)经过点C、D和二次函数图象具有对称性,可以求得该抛物线顶点的横坐标和CD的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.【详解】解:∵抛物线p=ax2−10ax+8=a(x−5)2−25a+8,∴该抛物线的顶点的横坐标是x=5,当x=0时,y=8,∴点D的坐标为:(0,8),∴OD=8,∵抛物线p=ax2−10ax+8(a>0)经过点C、D,CD∥AB∥x轴,∴CD=5×2=10,∴AD=10,∵∠AOD=90°,OD=8,AD=10,∴AO=,∵AB=10,∴OB=10−AO=10−6=4,∴点B的坐标为(4,0),故答案为:(4,0)【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.13、3【解析】

将已知的两式相乘即可得出答案.【详解】解:∵∴∴的值等于3.【点睛】本题主要考查了因式分解的解法:提公因式法.14、【解析】

把此正方体的一面展开,然后在平面内,利用勾股定理求点A和点B间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.【详解】解:∵展开后由勾股定理得:AB2=12+(1+1)2=5,∴AB=.故答案为【点睛】本题考查了平面展开﹣最短路径问题,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.15、30【解析】

根据正方形的面积公式,运用勾股定理可得结论:四个小正方形的面积之和等于最大的正方形的面积64cm1,问题即得解决.【详解】解:如图记图中三个正方形分别为P、Q、M.

根据勾股定理得到:A与B的面积的和是P的面积;C与D的面积的和是Q的面积;而P、Q的面积的和是M的面积.

即A、B、C、D的面积之和为M的面积.

∵M的面积是81=64,∴A、B、C、D的面积之和为64,设正方形D的面积为x,∴11+10+13+x=64,

∴x=30,故答案为30.【点睛】本题主要考查勾股定理,把正方形的面积转化为相关直角三角形的边长,再通过勾股定理探索图形面积的关系是解决此类问题常见的思路.16、14.1.【解析】

根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.【详解】该校女子排球队队员的平均年龄是≈14.1(岁),故答案为:14.1.【点睛】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.17、(1)360;(2)1,108,20%;(3)63;(4)1.【解析】解:(1)读图可知:有10%的学生即36人参加科技学习小组,故七年级共有学生:36÷10%=360(人).故答案为360;(2)统计图中美术占:1﹣30%﹣20%﹣10%﹣15%﹣5%=20%,参加美术学习小组的有:360×(1﹣30%﹣20%﹣10%﹣15%﹣5%)=360×20%=1(人),奥数小组的有360×30%=108(人);学习小组

体育

美术

科技

音乐

写作

奥数

人数

1

1

36

54

18

108

故答案为1,108,20%;(3)(4)从小到大排列:18,36,54,1,1,108故众数是1,中位数=(54+1)÷2=63;故答案为63,1.18、【解析】

过C作CM⊥x轴于点M,由平行四边形DCOE的面积可求得OE,过D作DN⊥x轴于点N,由C点坐标则可求得ON的长,从而可求得D点坐标,代入反比例函数解析式可求得k的值【详解】如图,过C作CM⊥x轴于点M,过D作DN⊥x轴于点N,则四边形CMND为矩形,∵四边形OABC为平行四边形,∴CD∥OE,且DE∥OC,∴四边形DCOE为平行四边形,∵C(2,5),∴OM=2,CM=5,由图可得,S△AOC=S△ABC=S▱ABCO,又∵S△FCP=S△DCP且S△AEP=S△AGP,∴S▱OEPF=S▱BGPD,∵四边形BCFG的面积为10,∴S▱CDEO=S▱BCFG=10,∴S四边形DCOE=OE•CM=10,即5OE=10,解得OE=2,∴CD=MN=2,∴ON=OM+MN=2+2=4,DN=CM=5,∴D(4,5),∵反比例函数y=图象过点D,∴k=4×5=20.故答案为:20.【点睛】本题考查反比例函数系数k的几何意义、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(共66分)19、(1)答案见解析;(2)0.8小时.【解析】

(1)由图象可得出渔船离港口的距离s和它离开港口的时间t的函数关系式,分为三段求函数关系式;(2)在渔政船驶往黄岩岛的过程中,8<t≤13,渔船与渔政船相距30海里,有两种可能:①s渔﹣s渔政=30,②s渔政﹣s渔=30,将函数关系式代入,列方程求t.【详解】解:(1)当0≤t≤5时,s=30t,当5<t≤8时,s=150,当8<t≤13时,s=﹣30t+390;(2)s渔=﹣30t+390,s渔政=45t﹣360,分两种情况:①s渔﹣s渔政=30,﹣30t+390﹣(45t﹣360)=30,解得t=(或9.6);②s渔政﹣s渔=30,45t﹣360﹣(﹣30t+390)=30,解得t=(或10.4)所以10.4﹣9.6=0.8(小时)所以,两船可以用对讲机通话的时间长为0.8小时.【点睛】本题考查了一次函数的应用.关键是根据图象求出渔船的分段函数的解析式及渔政船行驶的函数关系式.20、(1);(2)【解析】

(1)先根据算术平方根的代数意义,零指数幂的运算法则以及绝对值的意义进行化简,最后再进行加减运算;(2)先进行分母有理化运算和根据完全平方公式去括号,然后合并即可.【详解】(1)原式(2)原式【点睛】本题考查了二次根式的混合运算,同时还考查了绝对值和零指数幂.21、(1)见解析;(2)见解析【解析】

(1)根据题意画图即可补全图形;(2)由平行四边形的性质可得,,再根据平行线的性质可得,进而可根据ASA证明,进一步即可根据全等三角形的性质得出结论.【详解】解:(1)补全图形如图所示:(2)证明:∵四边形为平行四边形,∴,,∴,又∵,∴(ASA),∴.【点睛】本题考查了按题意画图、平行四边形的性质和全等三角形的判定和性质等知识,属于基本题型,熟练掌握平行四边形的性质和全等三角形的判定和性质是解题的关键.22、(1)证明见解析,(2)证明见解析【解析】

(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断△BEC≌△DFA.(2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形.【详解】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC.又∵E、F分别是边AB、CD的中点,∴BE=DF.∵在△BEC和△DFA中,,∴△BEC≌△DFA(SAS).(2)由(1)△BEC≌△DFA,∴CE=AF,∵E、F分别是边AB、CD的中点,∴AE=CF∴四边形AECF是平行四边形.【点睛】本题考查三角形全等的证明,矩形的性质和平行四边形的判定.23、(1)yB=1x-1(1≤x≤6).(2)如果A,B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【解析】试题分析:(1)设yB关于x的函数解析式为yB=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设yA关于x的解析式为yA=k1x.将(3,180)代入可求得yA关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得yA,yB的值,最后求得yA与yB的差即可.试题解析:(1)设yB关于x的函数解析式为yB=kx+b(k≠0).将点(1,0),(3,180)代入,得,解得:k=1,b=-1.∴yB关于x的函数解析式为yB=1x-1(1≤x≤6).(2)设yA关于x的函数解析式为yA=k1x.根据题意,得3k1=180.解得k1=60.∴yA=60x.当x=5时,yA=60×5=300;当x=6时,yB=1×6-1=450.450-300=150(千克).答:如果A,B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.24、(1)4,(2)2.【解析】

(1)分别计算二次根式的乘法、去绝对值符号以及零指数幂,然后再进行加减运算即可;(2)先把括号里的二次根式进行化简合并后,再根据二次根式的除法法则进行计算即可得解.【详解】(1);=,=4;(2)==,=2.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.25、(1);(2)D(-6,4);(3)M(-2,0)【解析】

(1)由题意将y=0和x=0分别代入即可求出点A、B的坐标,进而求出边AB的长;(2)根据题意作DH⊥轴于H,并利用全等三角形的判定与性质求得△DAH≌△ABO,进而得出DH和OH的值即可;(3)根据题意作D点关于轴的对称点为E,并连接BE交x轴于点M,△MDB的周长为,有为定值,只需满足的值最小即可,将进行转化,根据两点间线段最短即可知道此时的M即为所求,解出直线BE的解析式即可得到M点的坐标.【详解】解:(1)由题意直线y=x+2与x轴、y轴分别交于A、B两点,将y=0和x=0分别代入即可求出点A、B的坐标为:A(-4,0),B(0,2),所以AB=.(2)作DH⊥轴于H,由于∠DHA=∠BAD=90°,∠DAH+∠BAO=90°,∠BAO+∠ABO=90°,∴∠DAH=∠ABO,又DA=AB,∴△DAH≌△ABO(AAS),则DH=OA=4,AH=OB=2,OH=4+2=6,∵点D的坐标在第二象限,∴D(-6,4).(3)作D点关于轴的对称点为E,并连接BE交x轴于点M,根据轴对称的性质可知,E(-6,-4),△MDB的周长为:,有为定值,只需满足的值最小即可,将进行转化,根据两点间线段最短即可知道此时的M即为所求,利用待定系数法求得直线BE的解析式为,直线与轴的交点坐标为(-2,0),故M(-2,0).【点睛】本题考查一次函数与正方形,涉及的知识有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论