2024年杠杆专题-新疆哈密市第四中学八年级下册数学期末考试试题含解析_第1页
2024年杠杆专题-新疆哈密市第四中学八年级下册数学期末考试试题含解析_第2页
2024年杠杆专题-新疆哈密市第四中学八年级下册数学期末考试试题含解析_第3页
2024年杠杆专题-新疆哈密市第四中学八年级下册数学期末考试试题含解析_第4页
2024年杠杆专题-新疆哈密市第四中学八年级下册数学期末考试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年杠杆专题-新疆哈密市第四中学八年级下册数学期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.点P(2,-3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列说法中正确的是()A.有一组对边平行的四边形是平行四边形 B.对角线互相垂直的四边形是菱形C.有一组邻边相等的平行四边形是菱形 D.对角线互相垂直平分的四边形是正方形3.在下列四个标志中,既是中心对称又是轴对称图形的是()A. B. C. D.4.关于函数,下列说法正确的是()A.自变量的取值范围是 B.时,函数的值是0C.当时,函数的值大于0 D.A、B、C都不对5.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)6.下列特征中,平行四边形不一定具有的是()A.邻角互补 B.对角互补 C.对角相等 D.内角和为360°7.如图,已知,是的角平分线,,则点D到的距离是()A.3 B.4 C.5 D.68.以下各组数中,能作为直角三角形的三边长的是A.6,6,7 B.6,7,8 C.6,8,10 D.6,8,99.下列说法正确的是().A.的平方根是 B.是81的一个平方根C.0.2是0.4的算术平方根 D.负数没有立方根10.河堤横断面如图所示,斜坡AB的坡度=1:,BC=5米,则AC的长是()米.A. B.5 C.15 D.二、填空题(每小题3分,共24分)11.已知直线在轴上的截距是-2,且与直线平行,那么该直线的解析是______12.己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.13.如图,在平面直角坐标系中,矩形纸片OABC的顶点A,C分别在x轴,y轴的正半轴上,将纸片沿过点C的直线翻折,使点B恰好落在x轴上的点B′处,折痕交AB于点D.若OC=9,,则折痕CD所在直线的解析式为____.14.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.15.关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是_____.16.直线与轴、轴的交点分别为、则这条直线的解析式为__________.17.一组数据:,计算其方差的结果为__________.18.在菱形中,已知,,那么__________(结果用向量,的式子表示).三、解答题(共66分)19.(10分)解一元二次方程:(1)x2﹣5x﹣1=0(2)(2x﹣3)2=(x+2)220.(6分)在平面直角坐标系中,已知点,,,点与关于轴对称.(1)写出点所在直线的函数解析式;(2)连接,若线段能构成三角形,求的取值范围;(3)若直线把四边形的面积分成相等的两部分,试求的值.21.(6分)在中,D,E,F分别是三边,,上的中点,连接,,,,已知.(1)观察猜想:如图,当时,①四边形的对角线与的数量关系是________;②四边形的形状是_______;(2)数学思考:如图,当时,(1)中的结论①,②是否发生变化?若发生变化,请说明理由;(3)拓展延伸:如图,将上图的点A沿向下平移到点,使得,已知,分别为,的中点,求四边形与四边形的面积比.22.(8分)如图,已知.利用直尺和圆规,根据下列要求作图(不写作法,保留作图痕迹),并回答问题:(1)作的平分线、交于点;(2)作线段的垂直平分线,交于点,交于点,连接;(3)写出你所作出的图形中的所有等腰三角形.23.(8分)已知正比例函数与反比例函数.(1)证明:直线与双曲线没有交点;(2)若将直线向上平移4个单位后与双曲线恰好有且只有一个交点,求反比例函数的表达式和平移后的直线表达式;(3)将(2)小题平移后的直线代表的函数记为,根据图象直接写出:对于负实数,当取何值时24.(8分)如图,平行四边形ABCD中,点E、F分别是AD、BC的中点25.(10分)在平行四边形ABCD中,∠BAD的平分线交线段BC于点E,交线段DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.26.(10分)某种商品的标价为500元/件,经过两次降价后的价格为320元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该商品进价为280元/件,两次降价共售此种商品100件,为使两次降价销售的总利润不少于8000元,则第一次降价后至少要售出这种商品多少件?

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据各象限内点的坐标特征解答.【详解】解:点P(2,-3)在第四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、C【解析】

运用正方形的判定,菱形的判定,平行四边形的性质和判定可求解.【详解】解:A、有一组对边平行的四边形不一定是平行四边形(如梯形),故该选项错误;B、对角线互相垂直的四边形不一定是菱形(如梯形的对角线也可能垂直),故该选项错误;C、有一组邻边相等的平行四边形是菱形,故该选项正确;D、对角线互相垂直平分的四边形不一定是正方形(如菱形),故该选项错误;故选:C.【点睛】本题考查了正方形的判定,菱形的判定,平行四边形的性质和判定,灵活运用这些判定定理是解决本题的关键.3、C【解析】

根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【详解】解:A、不是中心对称图形,是轴对称图形,故本选项不合题意;

B、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;

C、既是中心对称图形又是轴对称图形,故本选项符合题意;

D、不是中心对称图形,是轴对称图形,故本选项不合题意.

故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、C【解析】

根据该函数的性质进行判断即可.【详解】A.根据可得,自变量的取值范围是,错误;B.将代入函数解析式中,无意义,错误;C.当时,,正确;D.A、B错误,C正确,故选项D错误;故答案为:C.【点睛】本题考查了函数的性质问题,掌握函数的定义以及性质是解题的关键.5、C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.6、B【解析】

根据平行四边形的性质得到,平行四边形邻角互补,对角相等,内角和360°,而对角却不一定互补.【详解】解:根据平行四边形性质可知:A、C、D均是平行四边形的性质,只有B不是.故选B.【点睛】本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7、A【解析】

首先过点D作于E,由在中,是的角平分线,根据角平分线的性质,即可得.【详解】过点D作于E,∵在中,,即,∴是的角平分线,∴,∴点D到的距离为3,故选A.【点睛】本题考查了角平分线的性质,熟练掌握角的平分线上的点到角的两边的距离相等是解此题的关键.8、C【解析】

分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【详解】解:A、,不能构成直角三角形;B、,不能构成直角三角形;C、,能构成直角三角形;D、,不能构成直角三角形;故选C.【点睛】考查了勾股数的判定方法,比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.9、B【解析】

依据平方根、算术平方根、立方根的性质解答即可.【详解】A.的平方根是±,故A错误,;B.−9是81的一个平方根,故B正确,;C.0.04的算术平方根是0.2,故C错误,;D.负数有立方根,故D错误.故选:B.【点睛】此题考查平方根,算术平方根,立方根,解题关键在于掌握运算法则.10、A【解析】

Rt△ABC中,已知坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】解:Rt△ABC中,BC=5米,tanA=1:,∴tanA=,∴AC=BC÷tanA=5÷=米,故选:A.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,解题的关键是熟练掌握坡度的定义,此题难度不大.二、填空题(每小题3分,共24分)11、【解析】【分析】根据一次函数的性质可求得.对于直线在轴上的截距是b;k是斜率,决定直线的位置关系.【详解】因为,已知直线在轴上的截距是-2,所以,b=-2.又直线与直线平行,所以,k=3.故答案为:【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数解析式中系数的意义.12、【解析】分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.详解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,∴S菱形ABCD=AC•BD=×2×2=2.故答案为2.点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.13、y=x+9.【解析】

根据OC=9,先求出BC的长,继而根据折叠的性质以及勾股定理的性质求出OB′的长,求得AB′的长,设AD=m,则B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的长,进而求得点D的坐标,再利用待定系数法进行求解即可.【详解】∵OC=9,,∴BC=15,∵四边形OABC是矩形,∴AB=OC=9,OA=BC=15,∠COA=∠OAB=90°,∴C(0,9),∵折叠,∴B′C=BC=15,B′D=BD,在Rt△COB′中,OB′==12,∴AB′=15-12=3,设AD=m,则B′D=BD=9-m,Rt△AB′D中,AD2+B′A2=B′D2,即m2+32=(9-m)2,解得m=4,∴D(15,4)设CD所在直线解析式为y=kx+b,把C、D两点坐标分别代入得:,解得:,∴CD所在直线解析式为y=x+9,故答案为:y=x+9.【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,待定系数法求一次函数的解析式,求出点D的坐标是解本题的关键.14、57.5【解析】

根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.【详解】如图,AE与BC交于点F,由BC//ED得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.【点睛】本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.15、k>1【解析】∵关于x的一元二次方程x1﹣1x+k﹣1=0没有实数根,∴△<0,即(﹣1)1﹣4(k﹣1)<0,解得k>1,故答案为k>1.16、y=1x+1.【解析】

把(-1,0)、(0,1)代入y=kx+b得到,然后解方程组可.【详解】解:根据题意得,解得,所以直线的解析式为y=1x+1.故答案为y=1x+1.【点睛】本题考查了待定系数法求一次函数的解析式:设一次函数的解析式为y=kx+b(k、b为常数,k≠0),然后把函数图象上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k、b,从而得到一次函数的解析式.17、【解析】

方差是用来衡量一组数据波动大小的量.数据5,5,5,5,5全部相等,没有波动,故其方差为1.【详解】解:由于方差是反映一组数据的波动大小的,而这一组数据没有波动,故它的方差为1.

故答案为:1.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18、【解析】

根据菱形的性质可知,,然后利用即可得出答案.【详解】∵四边形是菱形,∴,∵,,∴∴故答案为:.【点睛】本题主要考查菱形的性质及向量的运算,掌握菱形的性质及向量的运算法则是解题的关键.三、解答题(共66分)19、(1)x=;(2)x=5或x=.【解析】

(1)利用公式法求解可得;(2)两边直接开平方可得两个一元一次方程,再分别求解可得.【详解】解:(1)∵a=1、b=﹣5、c=﹣1,∴△=25﹣4×1×(﹣1)=29>0,则x=;(2)∵(2x﹣3)2=(x+2)2,∴2x﹣3=x+2或2x﹣3=﹣x﹣2,解得:x=5或x=.【点睛】此题考查解一元二次方程的方法,根据方程的特点,灵活选用适当的方法求得方程的解即可.20、(1);(2)时,线段能构成三角形;(3)当时,把四边形的面积分成相等的两部分.【解析】

(1)根据题意可得点,可得的当横坐标为m时,纵坐标为-3m+22,因此可得点C的所在直线的解析式.(2)首先利用待定系数法计算直线AB的解析式,再利用点C是否在直线上,来确定是否构成三角形,从而确定m的范围.(3)首先计算D点坐标,设的中点为,过作轴于,轴于,进而确定E点的坐标,再计算DE所在直线的解析式,根据点C在直线DE上可求得m的值.【详解】解:(1)根据题意可得点,可得的当横坐标为m时,纵坐标为-3m+22,所以(2)设所在直线的函数解析式为,将点,代入得,解得,∴当点在直线上时,线段不能构成三角形将代入,得解得,∴时,线段能构成三角形;(3)根据题意可得,设的中点为,过作轴于,轴于,根据三角形中位线性质可知,由三角形中线性质可知,当点在直线上时,把四边形的面积分成相等的两部分,设直线的函数解析式为,将,代入,得,解得,∴,将代入,得,解得,∴当时,把四边形的面积分成相等的两部分.【点睛】本题主要考查一次函数的性质,本题难度系数较大,关键在于根据点在直线上来求参数的.21、(1)①,②平行四边形;(2)结论①不变,结论②由平行四边形变为菱形,理由详见解析;(3)【解析】

(1)根据三角形中位线定理,即可得出,进而得解;由三角形中位线定理得出DE∥AC,,即可判定为平行四边形;(2)由中位线定理得出,,,然后根据,得出,,即可判定平行四边形是菱形;(3)首先设,,根据等腰直角三角形的性质,得出,进而得出,然后由三角形中位线定理得,,经分析可知:,且和互相垂直平分,即可得出四边形为正方形,又由,,,得出四边形为矩形,即可得出面积比.【详解】解:(1)①,②平行四边形;由已知条件和三角形中位线定理,得又∵∴②由三角形中位线定理得,DE∥AC,,∴四边形是平行四边形;(2)结论①不变,结论②由平行四边形变为菱形,四边形是菱形的理由是:∵,都是的中位线,∴,∴四边形是平行四边形∵是的中位线,∴∵∴,∴∴平行四边形是菱形.(3)设,当,是等腰直角三角形,∴∴由三角形中位线定理得,,∴,且和互相垂直平分∴四边形为正方形,∵,EF⊥AD,∴∴又∵,∴四边形为矩形,∴,∴所求面积比为【点睛】(1)此题主要考查三角形中位线定理的应用,利用其进行等式转换和平行四边形的判定,即可得解;(2)此题主要考查菱形的判定,熟练掌握,即可解题;(3)此题主要考查正方形和矩形的判定,关键是利用正方形和矩形的面积关系式,即可解题.22、(1)见解析;(2)见解析;(3)【解析】

(1)利用尺规作出∠ABC的角平分线即可.(2)利用尺规作出线段BD的垂直平分线即可.(3)根据等腰三角形的定义判断即可.【详解】(1)射线BD即为所求.(2)直线EF即为所求.(3)△BDE,△BDF,△BEF是等腰三角形.【点睛】本题考查作图-复杂作图,线段的垂直平分线,角平分线的定义等知识,解题的关键是熟练掌握基本知识.23、(1)方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点);(2)当时,当时,;(3)当或时满足.【解析】

(1)将和这两函数看成两个不定方程,联立方程组,整理后得方程,再利用根的判别式得出这个方程无解,所以两函数图象没有交点;(2)向上平移4个单位后,联立方程组,整理后得方程,因为直线与双曲线有且只有一个交点,所以方程有且只有一个解,利用根的判别式得出K的值,从而得到函数表达式;(3)取时,作出函数图象,观察图象可得到结论.【详解】(1)证明:将和这两函数看成两个不定方程,联立方程组得:两边同时乘得,整理后得利用计算验证得:∵所以方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点)(2)向上平移4个单位后,这时刚好与双曲线有且只有一个交点.联立方程组得:两边同时乘得,整理后得因为直线与双曲线有且只有一个交点,∴方程有且只有一个解,即:,将方程对应的值代入判别式得:解得综上所述:当时,,当时,,(3)题目要求负实数的值,所以我们取时的函数图象情况.图象大致如下图所示:计算可得交点坐标,要使,即函数的图象在函数图象的上方即可,由图可知,当或时函数的图象在函数,图象的上方,即当或时满足【点睛】本题考查了反比例函数和一次函数,是一个综合题,解题时要运用数形结合的思想.24、见解析【解析】

根据平行四边形的性质和已知可证AE=CF,∠BAE=∠DCF,AB=CD,故根据SAS可证△ABE≌△DCF.【详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠A=∠C,AD=BC,∵点E、F分别是∴AE=12∴AE=CF,在△ABE和△CDF中,AB=CD∠A=∠C∴△ABE≌△CDFSAS【点睛】本题考查了平行四边形的判定和全等三角形的判定.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.25、(1)证明见解析;(2)∠BDM的度数为45°;(3)∠BDG的度数为60°.【解析】

(1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形;(2)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到∠BDM的度数;(3)延长AB、FG交于H,连接HD,求证平行四边形AHFD为菱形,得出△ADH,△DHF为全等的等边三角形,证明△BHD≌△GFD,即可得出答案.【详解】(1)∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形.(2)如图,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论