江苏省苏州市工业园区星海实验中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第1页
江苏省苏州市工业园区星海实验中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第2页
江苏省苏州市工业园区星海实验中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第3页
江苏省苏州市工业园区星海实验中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第4页
江苏省苏州市工业园区星海实验中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市工业园区星海实验中学2024年八年级数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若点P(a,a﹣2)在第四象限,则a的取值范围是()A.﹣2<a<0 B.0<a<2C.a>2 D.a<02.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为()A. B. C. D.3.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都是1,正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积为()A. B.5 C.3 D.4.下面计算正确的是()A. B. C. D.(a>0)5.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1 B.﹣2 C.﹣1 D.26.点P(﹣1,2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2) C.(1,﹣2) D.(﹣1,﹣2)7.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.8.在同一直角坐标系中,函数y=-kx+k与y=(k≠0)的图象大致是()A. B. C. D.9.正多边形的内角和为540°,则该多边形的每个外角的度数为()A.36° B.72° C.108° D.360°10.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.3,4 B.4,3 C.3,3 D.4,411.矩形的长为x,宽为y,面积为8,则y与x之间的函数关系用图象表示大致为()A. B.C. D.12.某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A.6,6 B.7,6 C.7,8 D.6,8二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中直线y=−x+10与x轴,y轴分别交于A.B两点,C是OB的中点,D是线段AB上一点,若CD=OC,则点D的坐标为___14.一粒米的重量约为0.000036克,用科学记数法表示为_____克.15.如图,已知两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3把线段AB缩小,则点A的对应点坐标是_________(2,1)或(-2,-1)16.不等式1﹣2x≥3的解是_____.17.已知是一元二次方程的一根,则该方程的另一个根为_________.18.如图,把正方形纸片对折得到矩形ABCD,点E在BC上,把△ECD沿ED折叠,使点C恰好落在AD上点C′处,点M、N分别是线段AC′与线段BE上的点,把四边形ABNM沿NM向下翻折,点A落在DE的中点A′处.若原正方形的边长为12,则线段MN的长为_____.三、解答题(共78分)19.(8分)已知关于x的一元二次方程(m为常数)(1)求证:不论m为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m的值及方程的另一个根.20.(8分)某公司与销售人员签订了这样的工资合同:工资由两部分组成,一部分是基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售一件产品,奖励工资10元.设某销售员销售产品x件,他应得工资记为y元.(1)求y与x的函数关系式.(2)该销售员的工资为4100元,他这个月销售了多少件产品?(3)要使每月工资超过4500元,该月的销售量应当超过多少件?21.(8分)如图,在中,点是边上一个动点,过点作直线,设交的平分线于点,交的外角平分线于点.

(1)探究与的数量关系并加以证明;

(2)当点运动到上的什么位置时,四边形是矩形,请说明理由;

(3)在(2)的基础上,满足什么条件时,四边形是正方形?为什么?22.(10分)在平面直角坐标系中,直线经过、两点.(1)求直线所对应的函数解析式:(2)若点在直线上,求的值.23.(10分)已知,求代数式的值。24.(10分)解不等式组,并写出x的所有整数解.25.(12分)阅读下列解题过程,并解答后面的问题:如图,在平面直角坐标系中,,,C为线段AB的中点,求C的坐标.解:分别过A,C作x轴的平行线,过B,C作y轴的平行线,两组平行线的交点如图1.设C的坐标为,则D、E、F的坐标为,,由图可知:,∴C的坐标为问题:(1)已知A(-1,4),B(3,-2),则线段AB的中点坐标为______(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,-4),(0,2),(5,6),求D的坐标.(3)如图2,B(6,4)在函数的图象上,A的坐标为(5,2),C在x轴上,D在函数的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.26.如图,⊿是直角三角形,且,四边形是平行四边形,为的中点,平分,点在上,且.求证:

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据第四象限点的坐标符号,得出a>0,a﹣1<0,即可得出0<a<1,选出答案即可.【详解】解:∵点P(a,a﹣1)在第四象限,∴a>0,a﹣1<0,解得0<a<1.故选:B2、C【解析】

连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】解:连接AD,

∵△ABC是等腰三角形,点D是BC边的中点,

∴AD⊥BC,

∴S△ABC=BC•AD=×4×AD=16,解得AD=8,

∵EF是线段AC的垂直平分线,

∴点C关于直线EF的对称点为点A,

∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD故选:C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.3、B【解析】

过D点作直线EF与平行线垂直,与l2交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=2,DF=2.根据勾股定理可求CD2得正方形的面积.【详解】作EF⊥l2,交l2于E点,交l4于F点.∵l2∥l2∥l3∥l4,EF⊥l2,∴EF⊥l2,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.在△ADE和△DCF中∴△ADE≌△DCF(AAS),∴CF=DE=2.∵DF=2,∴CD2=22+22=3,即正方形ABCD的面积为3.故选B.【点睛】此题主要考查了正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.4、B【解析】分析:根据合并同类二次根式、二次根式的除法、二次根式的乘法、二次根式的性质与化简逐项计算分析即可.详解:A.∵4与不是同类二次根式,不能合并,故错误;B.∵,故正确;C.,故错误;D.(a>0),故错误;故选B.点睛:本题考查了二次根式的有关运算,熟练掌握合并同类二次根式、二次根式的除法、二次根式的乘法、二次根式的性质是解答本题的关键.5、C【解析】

把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【详解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6、A【解析】

解:根据关于y轴对称,横坐标互为相反数,纵坐标不变.故应选A考点:关于x轴、y轴对称的点的坐标7、A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8、C【解析】当k>0时,函数y=-kx+k的图象分布在第一、二、四象限,函数y=的图象位于第一、三象限。故本题正确答案为C.9、B【解析】

先根据内角和的度数求出正多边形的边数,再根据外角和度数进行求解.【详解】设这个正多边形的边数为x,则(x-2)×180°=540°,解得x=5,所以每个外角的度数为360°÷5=72°,故选B.【点睛】此题主要考查多边形的内角和公式,解题的关键是熟知多边形的内角和与外角和公式.10、C【解析】

根据众数,中位数,平均数的定义即可解答.【详解】解:已知一组数据2,3,4,x,1,4,3有唯一的众数4,只有当x=4时满足条件,故平均数==3,中位数=3,故答案选C.【点睛】本题考查众数,中位数,平均数的概念,熟悉掌握是解题关键.11、C【解析】

根据矩形面积计算公式即可解答.【详解】解:由矩形的面积8=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选:C.【点睛】本题考查矩形的面积计算公式,注意x,y的取值范围是解题关键.12、B【解析】

首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.【详解】解:把已知数据按从小到大的顺序排序后为5元,1元,1元,7元,8元,9元,10元,∴中位数为7∵1这个数据出现次数最多,∴众数为1.故选B.【点睛】本题结合众数与中位数考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.众数只要找次数最多的即可.二、填空题(每题4分,共24分)13、(4,8)【解析】

由解析式求得B的坐标,加入求得C的坐标,OC=5,设D(x,-x+10),根据勾股定理得出x+(x-5)=25,解得x=4,即可求得D的坐标.【详解】由直线y=−x+10可知:B(0,10),∴OB=10,∵C是OB的中点,∴C(0,5),OC=5,∵CD=OC,∴CD=5,∵D是线段AB上一点,∴设D(x,-x+10),∴CD=∴解得x=4,x=0(舍去)∴D(4,8),故答案为:(4,8)【点睛】此题考查一次函数与平面直角坐标系,勾股定理,解题关键在于利用勾股定理进行计算14、3.6×10﹣1【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000036=3.6×10﹣1;故答案为:3.6×10﹣1.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、(2,1)或(-2,-1)【解析】如图所示:∵A(6,3),B(6,0)两点,以坐标原点O为位似中心,相似比为,∴A′、A″的坐标分别是A′(2,1),A″((﹣2,﹣1).故答案为(2,1)或(﹣2,﹣1).16、x≤﹣1.【解析】

根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】∵﹣2x≥3﹣1,∴﹣2x≥2,则x≤﹣1,故答案为:x≤﹣1.【点睛】此题考查解一元一次不等式,难度不大17、-2【解析】

由于该方程的一次项系数是未知数,所以求方程的另一解根据根与系数的关系进行计算即可.【详解】设方程的另一根为x1,由根与系数的关系可得:1×x1=-2,∴x1=-2.故答案为:-2.【点睛】本题考查一元二次方程根与系数的关系,明确根与系数的关系是解题的关键.18、2【解析】

作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.想办法求出MK,再证明MN=4MK即可解决问题;【详解】解:如图,作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.由题意四边形DCEC′是正方形,△DGA′是等腰直角三角形,∴DG=GA′=3,AG=AD﹣DG=9,设AM=MA′=x,在Rt△MGA′中,x2=(9﹣x)2+32,∴x=5,AA′=,∵sin∠MAK=,∴,∴MK=,∵AM∥OA′,AK=KA′,∴MK=KO,∵BN∥HA′∥AD,DA′=EA′,∴MO=ON,∴MN=4MK=2,故答案为2.【点睛】本题考查翻折变换、正方形的性质.矩形的性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.三、解答题(共78分)19、(1)见解析;(2)即m的值为0,方程的另一个根为0.【解析】

(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m2+4>0,则方程有两个不相等实数解,于是可判断不论m为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t,利用根与系数的关系得到2+t=,2t=m,最终解出关于t和m的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m2+4,∵无论m为何值时m2≥0,∴m2+4≥4>0,即△>0,所以无论m为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t,根据题意得2+t=,2t=m,解得t=0,所以m=0,即m的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.20、(1)y=10x+3000(x≥0,且x为整数);(2)110件产品;(3)超过150件.【解析】分析:(1).根据营销人员的工资由两部分组成,一部分为基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,得出y与x的函数关系式即可;(2).利用某营销员某月工资为4100元,可求出他销售了多少件产品;(3).根据月工资超过4500元,求不等式解集即可.此题考查了一次函数的综合应用;关键是读懂题意得出y与x之间的函数关系式,进而利用等量关系分别求解;一次函数及其图像是初中代数中比较重要的内容.详解:∵销售人员的工资由两部分组成,一部分为基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,设营销员李亮月销售产品x件,他应得的工资为y元,∴y=10x+3000(,且x为整数);(2)∵若该销售员的工资为4100元,则10x+3000=4100,解之得:x=110,∴该销售员的工资为4100元,他这个月销售了110件产品;(3)根据题意可得:解得,∴要使每月工资超过4500元,该月的销售量应当超过150件.点睛:本题考查了一次函数的性质,熟记性质,会灵活运用性质是解题的关键.21、(1)OE=OF,理由见解析;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由见解析;(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由见解析;【解析】

(1)由平行线的性质和角平分线定义得出∠OEC=∠OCE,∠OFC=∠OCF,根据“等角对等边”得出OE=OC,OF=OC,即可得出结论;

(2)由(1)得出的OE=OC=OF,点O运动到AC的中点时,则由OE=OC=OF=OA,证出四边形AECF是平行四边形,再证出∠ECF=90°即可;

(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,得出四边形AECF是正方形.【详解】(1)OE=OF,理由如下:

∵MN∥BC,

∴∠OEC=∠BCE,∠OFC=∠DCF,

∵CE平分∠BCA,CF平分∠ACD,

∴∠OCE=∠BCE,∠OCF=∠DCF,

∴∠OCE=∠OEC,∠OCF=∠OFC,

∴OE=OC,OF=OC,

∴OE=OF;

(2)解:当点O运动到AC的中点时,四边形AECF是矩形.

∵当点O运动到AC的中点时,AO=CO,

又EO=FO,

∴四边形AECF为平行四边形,

又CE为∠ACB的平分线,CF为∠ACD的平分线,

∴∠BCE=∠ACE,∠ACF=∠DCF,

∴∠BCE+∠ACE+∠ACF+∠DCF=2(∠ACE+∠ACF)=180°,

即∠ECF=90°,

∴四边形AECF是矩形;

(3)解:当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:

∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,

∵MN∥BC,

当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,

∴AC⊥EF,

∴四边形AECF是正方形.【点睛】此题考查四边形综合题目,正方形和矩形的判定、平行四边形的判定、等腰三角形的判定、平行线的性质以及角平分线的定义,解题关键在于掌握各判定定理.22、(1);(2)【解析】

(1)设直线AB解析式为y=kx+b,把A与B坐标代入求出k与b的值,即可确定出直线AB所对应的函数解析式;(2)把点P(a,-2)代入吧(1)求得的解析式即可求得a的值.【详解】解:(1)设直线所对应的函数表达式为.直线经过、两点,解得直线所对应的函数表达式为.(2)点在直线上,..【点睛】此题考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解题关键在于把已知值代入解析式.23、【解析】

把x的值直接代入,再根据乘法公式进行计算即可.【详解】解:当时,【点睛】此题主要考查整式的运算,解题的关键是熟知整式的运算公式.24、;【解析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①,得:.解不等式②,得:.则不等式组的解集为.∴不等式组的整数解为:.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25、(1)(1,1);(2)D的坐标为(6,0);(3)D(2,2)或D(−6,−2)、D(10,6).【解析】

(1)直接套用中点坐标公式,即可得出中点坐标;(2)根据AC、BD的中点重合,可得出,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论