陕西师大附中2024年数学八年级下册期末教学质量检测试题含解析_第1页
陕西师大附中2024年数学八年级下册期末教学质量检测试题含解析_第2页
陕西师大附中2024年数学八年级下册期末教学质量检测试题含解析_第3页
陕西师大附中2024年数学八年级下册期末教学质量检测试题含解析_第4页
陕西师大附中2024年数学八年级下册期末教学质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西师大附中2024年数学八年级下册期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.用配方法解一元二次方程x2-8x+2=0,此方程可化为的正确形式是().A.(x-4)2=14 B.(x-4)2=18 C.(x+4)2=14 D.(x+4)2=182.已知点(a﹣1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是()A.a>1 B.a<﹣1C.﹣1<a<1 D.﹣1<a<0或0<a<13.正比例函数y=(k+2)x,若y的值随x的值的增大而减小,则k的值可能是()A.0 B.2 C.-4 D.-24.据统计,湘湖景区跨湖桥遗址参观人数2016年为10.8万人次,2018年为16.8万人次,设该景点年参观人次的年平均增长率为x,则可列方程()A.10.8(1+x)=16.8 B.10.8(1+2x)=16.8C.10.8(1+x)=16.8 D.10.8[(1+x)+(1+x)]=16.85.如图,在周长为18cm的▱ABCD中,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.6cm B.7cmC.8cm D.9cm6.随机抽取10名八年级同学调查每天使用零花钱的情况,结果如下表,则这10名同学每天使用零花钱的中位数是()每天使用零花钱的情况

单位(元)2345人数1522A.2元 B.3元 C.4元 D.5元7.某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:使用寿命x/h60≤x<100100≤x<140140≤x<180灯泡只数303040这批灯泡的平均使用寿命是()A.112h B.124h C.136h D.148h8.已知:如图,在长方形ABCD中,AB=4,AD=1.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为秒,当的值为_____秒时,△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或79.下列二次根式中,属于最简二次根式的是()A. B. C. D.10.下列条件中,不能判定四边形是平行四边形的是()A.对角线互相平分 B.两组对边分别相等C.对角线互相垂直 D.一组对边平行,一组对角相等二、填空题(每小题3分,共24分)11.若是一元二次方程的一个根,则根的判别式与平方式的大小比较_____(填>,<或=).12.如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得=____.13.将函数的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是____.14.如图已知四边形ABCD中,AB=CD,AB//CD要使四边形ABCD是菱形,应添加的条件是_____________________________(只填写一个条件,不使用图形以外的字母).15.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长_____.16.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg17.直线y=kx+b与直线y=-3x+4平行,且经过点(1,2),则k=______,b=______.18.因式分解:________.三、解答题(共66分)19.(10分)在“国学经典”主题比赛活动中,甲、乙、丙三位同学的三项比赛成绩如下表(单位:分).国学知识现场写作经典诵读甲867090乙868090丙868590(1)若“国学知识”、“现场写作”“经典诵读”分别按30%,20%,50%的比例计入该同学的比赛得分,请分别计算甲、乙两位同学的得分;(2)若甲同学的得分是80分,乙同学的得分是84分,则丙同学的得分是______分.20.(6分)在如图所示的平面直角坐标系内画一次函数y1=-x+4和y2=2x-5的图象,根据图象写出:(1)方程-x+4=2x-5的解;(2)当x取何值时,y1>y2?当x取何值时,y1>0且y2<0?21.(6分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m.(点A,E,C在同一直线上),已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)22.(8分)如图,函数的图象经过,,其中,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连结AD,DC,CB,AC与BD相交于点E.(1)若的面积为4,求点B的坐标;(2)四边形ABCD能否成为平行四边形,若能,求点B的坐标,若不能说明理由;(3)当时,求证:四边形ABCD是等腰梯形.23.(8分)(已知:如图1,矩形OACB的顶点A,B的坐标分别是(6,0)、(0,10),点D是y轴上一点且坐标为(0,2),点P从点A出发以每秒1个单位长度的速度沿线段AC﹣CB方向运动,到达点B时运动停止.(1)设点P运动时间为t,△BPD的面积为S,求S与t之间的函数关系式;(2)当点P运动到线段CB上时(如图2),将矩形OACB沿OP折叠,顶点B恰好落在边AC上点B′位置,求此时点P坐标;(3)在点P运动过程中,是否存在△BPD为等腰三角形的情况?若存在,求出点P坐标;若不存在,请说明理由.24.(8分)如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠1.求证:四边形ABCD是矩形.25.(10分)如图,在平行四边形中,、的平分线分别与线段交于点,与交于点.(1)求证:,;(2)若,,,求和的长度.26.(10分)我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题。(1)一共抽取了___个参赛学生的成绩;表中a=___;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)某校共2000人,安全意识不强的学生(指成绩在70分以下)估计有多少人?

参考答案一、选择题(每小题3分,共30分)1、A【解析】

依据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方求解可得.【详解】解:x2-8x+2=0,x2-8x=-2,x2-8x+16=-2+16,(x-4)2=14,故选A.移项,配方,即可得出选项.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,能够正确配方是解此题的关键.2、C【解析】试题解析:∵在反比例函数y=中,k>0,∴在同一象限内y随x的增大而减小,∵a-1<a+1,y1<y2∴这两个点不会在同一象限,∴a-1<0<a+1,解得-1<a<1故选C.【点睛】本题考察了反比例函数的性质,解题的关键是熟悉反比例函数的增减性,当k>0,在每一象限内y随x的增大而减小;当k<0,在每一象限内y随x的增大而增大.3、C【解析】

根据正比例函数图象与系数的关系列出关于k的不等式k+2<0,然后解不等式即可.【详解】解:∵正比例函数y=(k+2)x中,y的值随自变量x的值增大而减小,∴k+2<0,解得,k<-2;观察选项,只有选项C符合题意.故选:C.【点睛】本题考查正比例函数图象在坐标平面内的位置与k的关系.注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.4、C【解析】

2016年为10.8万人次,平均增长率为x,17年就为10.8(1+x),则18年就为10.8(1+x)2即可得出【详解】2016年为10.8万人次,2018年为16.8万人次,,平均增长率为x,则10.8(1+x)2=16.8,故选C【点睛】熟练掌握增长率的一元二次方程列法是解决本题的关键5、D【解析】

利用垂直平分线的性质即可求出BE=DE,所以△ABE的周长=AB+AE+BE=AB+AD.【详解】∵▱ABCD的对角线AC,BD相交于点O,∴O为BD的中点,∵OE⊥BD,∴BE=DE,∴△ABE的周长=AB+AE+BE=AB+AD=×18=9(cm),故答案为:D【点睛】本题考查的是平行四边形的性质及线段垂直平分线的性质,解答此题的关键是将三角形的三边长转为平行四边形的一组邻边的长.6、B【解析】

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:共10名同学,中位数是第5和第6的平均数,故中位数为3,

故选B.【点睛】本题考查中位数,正确理解中位数的意义是解题的关键.7、B【解析】

根据图表可知组中值,它们的顺序是80,120,160,然后再根据平均数的定义求出即可,平均数是指在一组数据中所有数据之和再除以数据的个数.【详解】解:这批灯泡的平均使用寿命是=124(h),故选B.【点睛】平均数在实际生活中的应用是本题的考点,解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.8、C【解析】

分两种情况进行讨论,根据题意得出BP=2t=2和AP=11-2t=2即可求得.【详解】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,

由题意得:BP=2t=2,

所以t=1,

因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,

由题意得:AP=11-2t=2,

解得t=2.

所以,当t的值为1或2秒时.△ABP和△DCE全等.

故选C.【点睛】本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.9、C【解析】

根据二次根式的定义即可求解.【详解】A.,根号内含有分数,故不是最简二次根式;B.,根号内含有小数,故不是最简二次根式;C.,是最简二次根式;D.=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.10、C【解析】

利用平行四边形的判定可求解.【详解】A、对角线互相平分的四边形是平行四边形,故该选项不符合题意;B、两组对边分别相等的四边形是平行四边形,故该选项不符合题意;C、对角线互相垂直的四边形不一定是平行四边形,故该选项符合题意;D、一组对边平行,一组对角相等,可得另一组对角相等,由两组对角相等的四边形是平行四边形,故该选项不符合题意;故选C.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定是本题的关键.二、填空题(每小题3分,共24分)11、=【解析】

首先把(2ax0+b)2展开,然后把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,再代入前面的展开式中即可得到△与M的关系.【详解】把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,∵(2ax0+b)2=4a2x02+4abx0+b2,∴(2ax0+b)2=4a(ax02+bx0)+b2=-4ac+b2=△,∴M=△.故答案为=.【点睛】本题是一元二次方程的根与根的判别式的结合试题,既利用了方程的根的定义,也利用了完全平方公式,有一定的难度.12、【解析】

根据勾股定理和已知条件,找出线段长度的变化规律,从而求出的长度,然后根据三角形的面积公式求面积即可.【详解】解:∵OP=1,过P作PP1⊥OP且PP1=1,得OP1=再过P1作P1P2⊥OP1且P1P2=1,得OP2=又过P2作P2P3⊥OP2且P2P3=1,得OP3=∴PnPn+1=1,OPn=∴P2014P2015=1,OP2014=∴=P2014P2015·OP2014=故答案为:.【点睛】此题考查的是利用勾股定理探索规律题,找到线段长度的变化规律并归纳公式是解决此题的关键.13、y=-4x-1【解析】

根据函数图象的平移规律:上加下减,可得答案.【详解】解:将函数y=-4x的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是y=-4x-1.

故答案为:y=-4x-1.【点睛】本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键.14、ACBD,或AB=AD(答案不唯一)【解析】【分析】首先根据AB∥CD,AB=CD可得四边形ABCD是平行四边形,再根据一组邻边相等的平行四边形是菱形可得添加条件AD=AB.也可以根据对角线互相垂直的平行四边形是菱形添加条件ACBD.【详解】可添加的条件为AD=AB,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD为菱形,故答案为:AB=AD(答案不唯一).【点睛】本题考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).15、1【解析】

根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF,由此就可以求出周长.【详解】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=1.故答案为1.【点睛】本题利用了平行四边形的性质和已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.16、20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg17、-3,1【解析】

根据两直线平行,得到k=-3,然后把(1,2)代入y=-3x+b中,可计算出b的值.【详解】∵直线y=kx+b与直线y=-3x+4平行,∴k=-3,∵直线y=-3x+b过点(1,2),∴1×(-3)+b=2,∴b=1.故答案为:-3;1.【点睛】本题主要考查两平行直线的函数解析式的比例系数关系,掌握若两条直线是平行的关系,那么它们的函数解析式的自变量系数相同,是解题的关键.18、【解析】

首先提出公因式,然后进一步利用完全平方公式进行因式分解即可.【详解】解:原式==.故答案为:.【点睛】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.三、解答题(共66分)19、(1)甲:84.8分;乙:1.8分;(2)1.【解析】

(1)根据加权平均数的定义即可求解;(2)根据甲乙的分数求出写作的分值占比,再求出丙的分数即可.【详解】解:(1)甲:(分);乙:(分).答:甲、乙两位同学的得分分别是84.8、1.8分.(2)∵甲得分80分,乙得分84分,∴乙比甲多得4分,∴现场写作的占比为,丙的现场写作比乙多5分,∴丙的得分为(分).故答案为:1.【点睛】此题主要考查加权平均数的求解与应用,解题的关键是熟知加权平均数的定义.20、(1)x=3.(2)当x<3时,y1>y2.当x<2.5时,y1>0且y2<0.【解析】分析:(1)根据题意画出一次函数和的图象,根据两图象的交点即可得出x的值;

(2)根据函数图象可直接得出结论.详解:(1)∵一次函数和的图象相交于点(3,1),

∴方程的解为x=3;

(2)由图象可知,当时,当时,且点睛:考查一次函数与一元一次不等式,一次函数与一元一次方程,注意数形结合思想在解题中的应用.21、21.1米.【解析】试题分析:将实际问题转化为数学问题进行解答;解题时要注意构造相似三角形,利用相似三角形的相似比,列出方程,通过解方程求解即可.解:过点D作DG⊥AB,分别交AB、EF于点G、H,∵AB∥CD,DG⊥AB,AB⊥AC,∴四边形ACDG是矩形,∴EH=AG=CD=1.2,DH=CE=1.8,DG=CA=31,∵EF∥AB,∴,由题意,知FH=EF﹣EH=1.7﹣1.2=1.5,∴,解得,BG=18.75,∴AB=BG+AG=18.75+1.2=19.95≈21.1.∴楼高AB约为21.1米.考点:相似三角形的应用.22、(1);(2)能,;(3)详见解析.【解析】

(1)将A的坐标代入反比例解析式中求出k的值,确定出反比例解析式,将B的坐标代入反比例解析式中,求出mn的值,三角形ABD的面积由BD为底边,AE为高,利用三角形面积公式来求,由B的坐标得到BD=m,由AC-EC表示出AE,由已知的面积,利用面积公式列出关系式,将mn的值代入,求出m的值,进而确定出n的值,即可得到B的坐标;(2)假设四边形ABCD为平行四边形,利用平行四边形的性质得到BD与AC互相平分,得到E为AC的中点,E为BD的中点,由A的坐标求出E的坐标,进而确定出B的坐标,将B坐标代入反比例解析式检验,B在反比例图象上,故假设正确,四边形ABCD能为平行四边形;(3)由由AC=BD,得到A的纵坐标与B的横坐标相等,确定出B的横坐标,将B横坐标代入反比例解析式中求出B的纵坐标,得到B的坐标,进而确定出E的坐标,得到DE=CE=1,由AC=BD,利用等式的性质得到AE=BE,进而得到两对对应边成比例,且由对顶角相等得到夹角相等,利用两边对应成比例且夹角相等的两三角形相似,得到三角形DEC与三角形AEB相似,由相似三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行得到CD与AB平行,而在直角三角形ADE与直角三角形BEC中,DE=EC,AE=BE,利用勾股定理得到AD=BC,且AD与BC不平行,可得出四边形ABCD为等腰梯形.【详解】解:(1);(2)若ABCD是平行四边形,则AC,BD互相平分,∵,∴,将代入反比例中,;∴B在上,则四边形ABCD能成为平行四边形;(3)∵,,;∴∵轴,轴,∴∴∵∴∴∴∴∴根据勾股定理,.∵AD与BC不平行∴则四边形ABCD是等腰梯形.【点睛】本题考查反比例函数综合题,熟练掌握计算法则是解题关键.23、(1)S=(2)(3)存在,(6,6)或,【解析】

(1)当P在AC段时,△BPD的底BD与高为固定值,求出此时面积;当P在BC段时,底边BD为固定值,用t表示出高,即可列出S与t的关系式;

(2)当点B的对应点B′恰好落在AC边上时,设P(m,10),则PB=PB′=m,由勾股定理得m2=22+(6-m)2,即可求出此时P坐标;

(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.【详解】解:(1)∵A,B的坐标分别是(6,0)、(0,10),

∴OA=6,OB=10,

当点P在线段AC上时,OD=2,BD=OB-OD=10-2=8,高为6,

∴S=×8×6=24;

当点P在线段BC上时,BD=8,高为6+10-t=16-t,

∴S=×8×(16-t)=-4t+64;

∴S与t之间的函数关系式为:;(2)设P(m,10),则PB=PB′=m,如图1,

∵OB′=OB=10,OA=6,∴AB′==8,

∴B′C=10-8=2,

∵PC=6-m,

∴m2=22+(6-m)2,解得m=

则此时点P的坐标是(,10);(3)存在,理由为:

若△BDP为等腰三角形,分三种情况考虑:如图2,

①当BD=BP1=OB-OD=10-2=8,

在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1=,

∴AP1=10−,

即P1(6,10-),

②当BP2=DP2时,此时P2(6,6);

③当DB=DP3=8时,

在Rt△DEP3中,DE=6,

根据勾股定理得:P3E=,

∴AP3=AE+EP3=+2,

即P3(6,+2),

综上,满足题意的P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论