版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第03讲平方差和完全平方公式【题型1平方差公式运算】【题型2利用平方差公式进行简便运算】【题型3平方差公式的逆运算】【题型4平方差公式的几何背景】【题型5完全平方公式】【题型6完全平方公式下得几何背景】【题型7完全平方公式的逆运算】考点1:平方差公式平方差公式:语言描述:两个数的和与这两个数的差的积,等于这两个数的平方差.注意:在这里,既可以是具体数字,也可以是单项式或多项式.考点2:平方差公式的特征抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:①位置变化,xyyxx2y2②符号变化,xyxyx2y2x2y2③指数变化,x2y2x2y2x4y4④系数变化,2ab2ab4a2b2⑤换式变化,xyzmxyzmxy2zm2x2y2zmzmx2y2z2zmzmm2x2y2z22zmm2⑥增项变化,xyzxyzxy2z2xyxyz2x2xyxyy2z2x22xyy2z2【题型1平方差公式运算】【典例1】(2023春•渭南期中)计算(3a+2)(3a﹣2)=.【变式11】(2023春•蕉城区校级月考)若a+b=1,a﹣b=2022,则a2﹣b2=.【变式12】(2023春•双峰县期末)(4a+b)(﹣b+4a)=16a2﹣b2.【答案】16a2﹣b2.【解答】解:原式=(4a)2﹣b2=16a2﹣b2.故答案为:16a2﹣b2.【变式13】(2023春•埇桥区期末)计算:(2x﹣3y)(3y+2x)=4x2﹣9y2.【答案】4x2﹣9y2.【解答】解:(2x﹣3y)(3y+2x)=(2x)2﹣(3y)2=4x2﹣9y2.故答案为:4x2﹣9y2.【题型2利用平方差公式进行简便运算】【典例2】(2023春•佛冈县期中)19992﹣1998×2002.【答案】﹣3995.【解答】解:原式=(2000﹣1)2﹣(2000﹣2)×(2000+2)=20002﹣4000+1﹣20002+4=﹣3995.【变式21】(2023•皇姑区校级开学)简便运算:20222﹣2020×2024.【答案】4.【解答】解:20222﹣2020×2024=20222﹣(2022﹣2)×(2022+2)=20222﹣(20222﹣4)=20222﹣20222+4=4.【变式22】(2023春•安乡县期中)计算:20222﹣2021×2023.【答案】1.【解答】解:20222﹣2021×2023.=20222﹣(2022﹣1)×(2022+1)=20222﹣20222+1=1.【变式23】(2023春•渭滨区期末)用整式乘法公式计算:899×901+1.【答案】810000.【解答】解:899×901+1=(900﹣1)×(900+1)+1=9002﹣1+1=810000.【题型3平方差公式的逆运算】【典例3】(2023春•海阳市期末)已知x+2y=13,x2﹣4y2=39,则多项式x﹣2y的值是3.【答案】3.【解答】解:∵x+2y=13,x2﹣4y2=39,∴x2﹣4y2=(x+2y)(x﹣2y)=39,∴x﹣2y=3.故答案为:3.【变式31】(2023春•辽阳期末)若m2﹣n2=6,且m+n=3,则n﹣m等于﹣2.【答案】﹣2.【解答】解:∵(m+n)(m﹣n)=m2﹣n2,∴m﹣n=(m2﹣n2)÷(m+n)=6÷3=2,∴n﹣m=﹣2,故答案为:﹣2.【变式32】(2023春•广饶县期中)已知实数a,b满足a2﹣b2=40,a﹣b=4,则a+b的值为10.【答案】10.【解答】解:∵a2﹣b2=40,∴(a+b)(a﹣b)=40,∵a﹣b=4,∴a+b=10.故答案为:10.【变式33】(2023春•甘州区校级期末)若m2﹣n2=6,m+n=3,则=1.【答案】1.【解答】解:∵m2﹣n2=6,m+n=3,∴(m﹣n)(m+n)=6,则m﹣n的值是2,∴=1.故答案为:1.【题型4平方差公式的几何背景】【典例4】(2023春•东昌府区校级期末)如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分剪拼成垄一个矩形.(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:B.A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)D.a2﹣b2=(a﹣b)2(2)应用你从(1)选出的等式,完成下列各题:①已知:a+b=7,a2﹣b2=28,求a﹣b的值;②计算:;【答案】(1)B;(2)a﹣b=4;(3).【解答】解:(1)第一个图形面积为a2﹣b2,第二个图形的面积为(a+b)(a﹣b),∴可以验证的等式是:a2﹣b2=(a+b)(a﹣b),故答案为:B;(2)∵a+b=7,a2﹣b2=28,∴(a+b)(a﹣b)=28,即7(a﹣b)=28,∴a﹣b=4;(3)原式=(1﹣)×(1+)×(1﹣)×(1+)×(1﹣)×(1+)×...×(1﹣)×(1+)=××××××...××=×=.【变式41】(2023春•高明区月考)乘法公式的探究及应用.(1)如图1到图2的操作能验证的等式是D.(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2+ab=a(a+b)C.(a﹣b)2=(a+b)2﹣4abD.a2﹣b2=(a+b)(a﹣b)(2)当4m2=12+n2,2m+n=6时,则2m﹣n=2;(3)运用你所得到的公式,计算下列各题:①20232﹣2022×2024;②2×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1.【答案】(1)D;(2)2;(3)①1;②332.【解答】解:(1)如图,图1中阴影面积为a2﹣b2,图2的阴影面积为(a+b)(a﹣b),∴图1到图2的操作能验证的等式是a2﹣b2=(a+b)(a﹣b),故答案为:D;(2)∵4m2=12+n2,∴4m2﹣n2=12即(2m+n)(2m﹣n)=12,∵2m+n=6,∴2m﹣n=2,故答案为:2;(3)①20232﹣2022×2024=20232﹣(2023﹣1)×(2023+1)=20232﹣20232+1=1;②2×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1=(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)+1=(38﹣1)×(38+1)×(316+1)+1=(316﹣1)×(316+1)+1=332﹣1+1=332.【变式42】(2023春•清远期末)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)根据上述操作利用阴影部分的面积关系得到的等式:C(选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2;B.a2+ab=a(a+b);C.a2﹣b2=(a+b)(a﹣b),D.(a﹣b)2=(a+b)2﹣4ab(2)请应用(1)中的等式,解答下列问题:(1)计算:2022×2024﹣20232;(2)计算:3(22+1)(24+1)(28+1)…(264+1)+1.【答案】(1)C;(2)①﹣1,2128.【解答】解:(1)根据图1知:S阴影=a2﹣b2.根据图2知:S阴影=(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),故选:C.(2)①原式=(2023﹣1)(2023+1)﹣20232=20232﹣12﹣20232=﹣1.②原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(264+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(264+1)+1=(24﹣1)(24+1)(28+1)…(264+1)+1=(2128﹣1)+1=2128.【变式43】(2023春•屏南县期中)乘法公式的探究及应用:如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形.(1)通过计算左、右两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2;(2)利用上述乘法公式计算:①1002﹣98×102;②(2m+n﹣p)(2m+n+p).【答案】(1)(a+b)(a﹣b)=a2﹣b2;(2)①4;②4m2+4mn+n2﹣p2.【解答】解:(1)两个图形中阴影部分面积一致,大小正方形面积之差等于等腰梯形的面积,且等腰梯形的高为大小正方形边长差,故;故答案为:(a+b)(a﹣b)=a2﹣b2;(2)①1002﹣98×102=1002﹣(100﹣2)(100+2)=1002﹣(1002﹣22)=1002﹣1002+22=4②(2m+n﹣p)(2m+n+p)=(2m+n)2﹣p2=4m2+4mn+n2﹣p2.考点3:完全平方公式完全平方公式:两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍注意:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:考点4:拓展、补充公式;;;.【题型5完全平方公式】【典例5】(2023春•砀山县校级期末)计算:(x+4)2﹣x2=8x+16.【答案】8x+16.【解答】解:(x+4)2﹣x2=x2+8x+16﹣x2=8x+16,故答案为:8x+16.【变式51】(2023春•威宁县期末)已知x2+y2=10,xy=2,则(x﹣y)2=6.【答案】见试题解答内容【解答】解:∵x2+y2=10,xy=2,∴(x﹣y)2=x2+y2﹣2xy=10﹣4=6.故答案为:6.【变式52】(2023春•东港市期中)若(2x﹣m)2=4x2+nx+9,则n的值为±12.【答案】±12.【解答】解:∵(2x﹣m)2=4x2﹣4mx+m2,∴m2=9,∴m=±3,∴n=﹣4m=±12.故答案为:±12.【变式53】(2023春•未央区校级月考)计算:(x+2)2+(1﹣x)(2+x).【答案】3x+6.【解答】解:原式=x2+4x+4+2+x﹣2x﹣x2=3x+6.【题型6完全平方公式下得几何背景】【典例6】(2023秋•绿园区校级月考)为创建文明校园环境,高校长制作了“节约用水”“讲文明,讲卫生”等宣传标语,标语由如图①所示的板材裁剪而成,其为一个长为2m,宽为2n的长方形板材,将长方形板材沿图中虚线剪成四个形状和大小完全相同的小长方形标语,在粘贴过程中,同学们发现标语可以拼成图②所示的一个大正方形.(1)用两种不同方法表示图②中小正方形(阴影部分)面积:方法一:S小正方形=(m﹣n)2;方法二:S小正方形=(m+n)2﹣4mn;(2)(m+n)2,(m﹣n)2,4mn这三个代数式之间的等量关系为(m+n)2=(m﹣n)2+4mn;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:a﹣=1,求:的值.【答案】(1)(m﹣n)2,(m+n)2﹣4mn;(2)(m+n)2=(m﹣n)2+4mn;(3)①1;②5.【解答】解:(1)方法1:;方法2:,故答案为:(m﹣n)2,(m+n)2﹣4mn;(2)∵(m+n)2=m2+2mn+n2,(m﹣n)2+4mn=m2﹣2mn+n2+4mn=m2+2mn+n2,∴(m+n)2=(m﹣n)2+4mn,故答案为:(m+n)2=(m﹣n)2+4mn;(3)①a﹣b=5,ab=﹣6,∴(a+b)2=(a﹣b)2+4ab,=52+4×(﹣6)=25+(﹣24)=1;②=12+4=1+4=5.【变式61】(2023春•甘州区校级期中)图1是一个长为2x、宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于x﹣y.(2)试用两种不同的方法求图2中阴影部分的面积.方法1:(x﹣y)2;方法2:(x+y)2﹣4xy.(3)根据图2你能写出下列三个代数式之间的等量关系吗?代数式:(x+y)2,(x﹣y)2,4xy.(x+y)2=(x﹣y)2+4xy(4)根据(3)题中的等量关系,解决如下问题:若x+y=4,xy=3,则(x﹣y)2=4.【答案】见试题解答内容【解答】解:(1)图②中的阴影部分的小正方形的边长=x﹣y;故答案为:(x﹣y);(2)方法①(x﹣y)2;方法②(x+y)2﹣4xy;故答案为:(x﹣y)2,(x+y)2﹣4xy;(3)(x+y)2=(x﹣y)2+4xy;故答案为:(x+y)2=(x﹣y)2+4xy;(4)(x﹣y)2=(x+y)2﹣4xy=42﹣12=4故答案为:4.【变式62】(2023•永修县校级开学)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:(m+n)2﹣4mn;方法二:(m﹣n)2.(2)根据(1)的结论,请你写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b=6,ab=5,求a﹣b的值.【答案】(1)(m+n)2﹣4mn,(m﹣n)2;(2)代数式(m+n)2,(m﹣n)2,mn之间的等量关系可表示为:(m+n)2﹣4mn=(m﹣n)2;(3)±4.【解答】解:(1)由题意得,图②中阴影部分的面积为(m+n)2﹣4mn或(m﹣n)2,故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)由(1)题可得,(m+n)2﹣4mn=(m﹣n)2,∴代数式(m+n)2,(m﹣n)2,mn之间的等量关系可表示为:(m+n)2﹣4mn=(m﹣n)2;(3)由(2)题结果可得,(a+b)2﹣4ab=(a﹣b)2,∴a﹣b=±,∴当a+b=6,ab=5时,a﹣b=±=±==±4.【变式63】(2023春•湖州期中)阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b.则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80.解决问题:(1)若x满足(2021﹣x)2+(x﹣2018)2=2020.求(2021﹣x)(x﹣2018)的值;(2)如图,在矩形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x.分别以FC、CE为边在矩形ABCD外侧作正方形CFGH和CEMN,若矩形CEPF的面积为160平方单位,求图中阴影部分的面积和.【答案】(1)﹣;(2)384.【解答】解:(1)设2021﹣x=a,x﹣2008=b.则a+b=3,而(2021﹣x)2+(x﹣2018)2=2020=a2+b2,∴(2020﹣x)(x﹣2018)=ab===﹣;(2)由AB=20,BC=12,BE=DF=x,则CE=12﹣x,CF=20﹣x,∵矩形CEPF的面积为160平方单位,∴(12﹣x)(20﹣x)=160,∴S阴影部分=CE2+FC2=(12﹣x)2+(20﹣x)2,设12﹣x=m,20﹣x=n,则mn=160,m﹣n=﹣8,∴S阴影部分=CE2+FC2=(12﹣x)2+(20﹣x)2,=m2+n2=(m﹣n)2+2mn=64+320=384,即阴影部分的面积为384.【题型7完全平方公式的逆运算】【典例7】(2023春•永丰县期中)已知:a2+b2=3,a+b=2.求:(1)ab的值;(2)(a﹣b)2的值;(3)a4+b4的值.【答案】(1);(2)2;(3).【解答】解:(1)∵a+b=2,∴(a+b)2=4,即a2+2ab+b2=4,∵a2+b2=3,∴3+2ab=4,∴ab=;(2)(a﹣b)2=(a+b)2﹣4ab=4﹣4×=2;(3)a4+b4=(a2+b2)2﹣2a2b2=(a2+b2)2﹣2(ab)2=32﹣2×()2=9﹣=.【变式71】(2023春•都昌县期末)已知实数m,n满足m+n=6,mn=﹣3.(1)求(m+2)(n+2)的值;(2)求m2+n2的值.【答案】(1)13;(2)42.【解答】解:(1)因为m+n=6,mn=﹣3,所以(m+2)(n+2)=mn+2m+2n+4=mn+2(m+n)+4=﹣3+2×6+4=13.(2)m2+n2=(m+n)2﹣2mn=62﹣2×(﹣3)=36+6=42.【变式72】(2023春•周村区期末)若x+y=2,且(x+3)(y+3)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【答案】见试题解答内容【解答】解:(1)∵(x+3)(y+3)=12,∴xy+3x+3y+9=12,则xy+3(x+y)=3,将x+y=2代入得xy+6=3,则xy=﹣3;(2)当xy=﹣3、x+y=2时,原式=(x+y)2+xy=22+(﹣3)=4﹣3=1.【变式73】(2022秋•大安市期末)已知m﹣n=6,mn=4.(1)求m2+n2的值.(2)求(m+2)(n﹣2)的值.【答案】(1)44;(2)﹣12.【解答】解:(1)因为m﹣n=6,mn=4,所以m2+n2=(m﹣n)2+2mn=62+2×4=36+8=44;(2)因为m﹣n=6,mn=4,所以(m+2)(n﹣2)=mn﹣2m+2n﹣4=mn﹣2(m﹣n)﹣4=4﹣2×6﹣4=﹣12.一.选择题(共10小题)1.(2023•东营模拟)对于任意有理数a,b,现用“☆”定义一种运算:a☆b=a2﹣b2,根据这个定义,代数式(x+y)☆y可以化简为()A.xy+y2 B.xy﹣y2 C.x2+2xy D.x2【答案】C【解答】解:(x+y)☆y=(x+y)2﹣y2=x2+2xy+y2﹣y2=x2+2xy.故选:C.2.(2022秋•官渡区期末)若(x+m)2=x2+8x+16.则m的值为()A.4 B.±4 C.8 D.±8【答案】A【解答】解:(x+m)2=x2+8x+16=(x+4)2,∴m=4,故选:A.3.(2023秋•城中区校级期中)已知x﹣y=5,xy=4,则x2+y2的值为()A.10 B.17 C.26 D.33【答案】D【解答】解:∵x﹣y=5,∴(x﹣y)2=25,即x2﹣2xy+y2=25,又∵xy=4,∴x2+y2=25+2×4=33.故选:D.4.(2023•虎林市校级二模)下列运算正确的是()A.3mn﹣2mn=1 B.(m2n3)2=m4n6 C.(﹣m)3•m=m4 D.(m+n)2=m2+n2【答案】B【解答】解:A.3mn﹣2mn=mn,故本选项不合题意;B.(m2n3)2=m4n6,故本选项符合题意;C.(﹣m)3•m=﹣m4,故本选项不合题意;D.(m+n)2=m2+2mn+n2,故本选项不合题意;故选:B.5.(2023春•电白区期末)已知a+b=7,a﹣b=8,则a2﹣b2的值是()A.11 B.15 C.56 D.60【答案】C【解答】解:∵a+b=7,a﹣b=8,∴a2﹣b2=(a+b)(a﹣b)=7×8=56.故选:C.6.(2023春•西安期末)下列各式中,能用平方差公式计算的是()A.(a+2b)(2a﹣b) B.(a﹣3)(﹣a+3) C.(x﹣3)2 D.(2x+y)(2x﹣y)【答案】D【解答】解:A.(a+2b)(2a﹣b)不符合平方差公式的结构特征,因此选项A不符合题意;B.(a﹣3)(﹣a+3)=﹣(a﹣3)2,因此选项B不符合题意;C.(x﹣3)2是完全平方式,因此选项C不符合题意;D.(2x+y)(2x﹣y)=4x2﹣y2,因此选项D符合题意;故选:D.7.(2023春•兴宾区期末)已知x+y=1,x﹣y=3,则xy的值为()A.2 B.1 C.﹣1 D.﹣2【答案】D【解答】解:∵x+y=1,x﹣y=3,(x+y)2﹣(x﹣y)2=4xy,∴12﹣32=4xy,∴xy=﹣2,故选:D.8.(2023秋•藁城区期末)如图,从边长为a+1的正方形纸片中剪去一个边长为a﹣1的正方形(a>1),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.4a B.2a C.a2﹣1 D.2【答案】A【解答】解:根据拼图可知,拼成的长方形的长为(a+1)+(a﹣1)=2a,宽为(a+1)﹣(a﹣1)=2,因此面积为2a×2=4a,故选:A.9.(2023秋•大冶市期末)在下面的正方形分割方案中,可以验证(a+b)2=(a﹣b)2+4ab的图形是()A. B. C. D.【答案】D【解答】解:∵由选项A可得a2﹣b2=(a+b)(a﹣b),∴选项A不符合题意;∵由选项B可得(a+b)2=a2+2ab+b2,∴选项B不符合题意;∵由选项C可得(a﹣b)2=a2﹣2ab+b2.∴选项C不符合题意;∵由选项D可得(a+b)2=(a﹣b)2+4ab,∴选项D符合题意;故选:D.10.(2023春•鼓楼区校级期末)已知方程x2﹣6x+q=0配方后是(x﹣p)2=16,那么方程x2+6x+q=0配方后是()A.(x﹣p)2=14 B.(x+p)2=14 C.(x﹣p)2=18 D.(x+p)2=16【答案】D【解答】解:x2﹣6x+q=0,x2﹣6x=﹣q,配方,得x2﹣6x+9=﹣q+9,即(x﹣3)2=﹣q+9,∵方程x2﹣6x+q=0配方后是(x﹣p)2=16,∴p=3,﹣q+9=16,∴q=﹣7,∴x2+6x+q=0为x2+6x﹣7=0,x2+6x=7,x2+6x+9=7+9,(x+3)2=16,∵P=3,∴(x+p)2=16,故选:D.二.填空题(共5小题)11.(2023秋•鼓楼区校级期末)若9x2+kx+4是一个完全平方式,则k的值为±12.【答案】±12.【解答】解:∵9x2+kx+4是一个完全平方式,∴kx=±(2×3x×2)=±12x,∴k=±12,故答案为:±12.12.(2023秋•永善县期末)若多项式x2+kx+25是完全平方式,则k的值是±10.【答案】±10.【解答】解:∵x2+kx+25是一个完全平方式,∴x2+kx+25=x2+kx+52=(x±5)2,∵(x±5)2=x2±10x+25,∴kx=±10x,解得k=±10.故答案为:±10.13.(2023秋•龙岩期末)若a2﹣b2=15,a+b=﹣3,则a﹣b的值为﹣5.【答案】﹣5.【解答】解:∵a2﹣b2=15,∴(a+b)(a﹣b)=15.∵a+b=﹣3,∴﹣3(a﹣b)=15,∴a﹣b=﹣5.故答案为:﹣5.14.(2023秋•丰泽区期末)边长为a的正方形ABCD与边长为b的正方形DEFG按如图所示的方式摆放,点A,D,G在同一直线上.已知a+b=10,ab=24.则图中阴影部分的面积为14.【答案】14.【解答】解:由S阴影部分=S正方形ABCD+S正方形DEFG﹣S△ABC﹣S△AFG可得,S阴影部分=a2+b2﹣a2﹣b(a+b)=a2+b2﹣ab=(a2+b2﹣ab)=[(a+b)2﹣3ab]=×(100﹣72)=14,故答案为:14.15.(2023秋•海口期末)根据图,利用面积的不同表示方法写出一个代数恒等式(a+b)2=(a﹣b)2+4ab.【答案】见试题解答内容【解答】解:根据题意得:(a+b)2=(a﹣b)2+4ab.故答案为:(a+b)2=(a﹣b)2+4ab.三.解答题(共4小题)16.(2023秋•宜州区期末)计算:(3+a)(3﹣a)+(a+1)2.【答案】2a+10.【解答】解:原式=9﹣a2+a2+2a+1=2a+10.17.(2023秋•雷州市期末)若x,y满足x2+y2=8,xy=2,求下列各式的值.(1)(x+y)2;(2)x﹣y;(3)x3y+xy3.【答案】(1)12;(2)±2;(3)16.【解答】解:(1)∵x2+y2=8,xy=2,∴(x+y)2=x2+y2+2xy=8+2×2=12;(2)∵x2+y2=8,xy=2,∴x﹣y=±=±=±2.(3)∵x2+y2=8,xy=2,∴x3y+xy3=xy(x2+y2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州财经大学《创业团队管理》2023-2024学年第一学期期末试卷
- 2025年甘肃省建筑安全员C证考试题库
- 2025年河南省安全员《C证》考试题库
- 贵阳学院《山水写生》2023-2024学年第一学期期末试卷
- 广州应用科技学院《游戏制作与开发》2023-2024学年第一学期期末试卷
- 广州铁路职业技术学院《建筑力学(上)》2023-2024学年第一学期期末试卷
- 2025四川省安全员-C证考试(专职安全员)题库附答案
- 2025云南省建筑安全员《C证》考试题库及答案
- 6.4.2向量在物理中的应用举例【超级课堂】2022-2023学年高一数学教材配套教学精-品课件+分层练习人教A版2019必修第二册
- 材料力学课件-动载荷
- 学校安全事故应急处置流程图
- 姜安《政治学概论》(第2版)笔记和典型题(含考研真题)详解
- 汉字拼写游戏
- 广东省国家公务员录用体检表
- GB/T 12310-2012感官分析方法成对比较检验
- 公厕管理保洁及粪便收运处理方案
- FZ/T 70010-2006针织物平方米干燥重量的测定
- 银行贷款批复样本
- 老年髋部骨折患者围术期麻醉管理课件
- 采购员年终工作总结课件
- 通信专业应知应会考核试题题库及答案
评论
0/150
提交评论