湖北省谷城县2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第1页
湖北省谷城县2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第2页
湖北省谷城县2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第3页
湖北省谷城县2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第4页
湖北省谷城县2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省谷城县2024年八年级下册数学期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,是某市6月份日平均气温情况,在日平均气温这组数据中,众数和中位数分别是()A.21,22 B.21,21.5 C.10,21 D.10,222.如图,腰长为的等腰直角三角形绕直角顶点顺时针旋转得到,则图中阴影部分的面积等于()A. B. C. D.3.下列根式中属最简二次根式的是()A. B. C. D.4.一组数据1,2,3,4,5的方差与下列哪组数据的方差相同的是()A.2,4,6,8,10B.10,20,30,40,50C.11,12,13,14,15D.11,22,33,44,555.如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为()A.πcm2 B.4cm2 C.cm2 D.cm26.下列各组数据中能作为直角三角形的三边长的是()A.1,2,2 B. C.13,14,15 D.6,8,107.如图,平行四边形ABCD中,于点E,CE的垂真平分线MV分别交AD、BC于M、N,交CE于O,连接CM、EM,下列结论:(1)(2)(3)(4)·其中正确的个数有()A.1个 B.2个 C.3个 D.4个8.直线l是以二元一次方程的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力 B.调查某班学生的身高情况C.调查春节联欢晚会的收视率 D.调查济宁市居民日平均用水量10.下列命题中,真命题是()A.平行四边形的对角线相等B.矩形的对角线平分对角C.菱形的对角线互相平分D.梯形的对角线互相垂直二、填空题(每小题3分,共24分)11.已知,则比较大小2_____3(填“<“或“>”)12.如图,在长20米、宽10米的长方形草地内修建了宽2米的道路,则草地的面积是______平方米.13.在实数范围内分解因式:5-x2=_____.14.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.15.如图,在正方形的内侧,作等边,则的度数是________.16.用配方法解方程时,将方程化为的形式,则m=____,n=____.17.若关于x的一元二次方程有两个不相等的实数根,则非正整数k的值是______.18.直线y=x+1与y=-x+7分别与x轴交于A、B两点,两直线相交于点C,则△ABC的面积为___.三、解答题(共66分)19.(10分)计算:5÷﹣3+2.20.(6分)某校在招聘数学教师时以考评成绩确定人选.甲、乙两位高校毕业生的各项考评成绩如下.如果按笔试成绩占30%、模拟上课占60%、答辩占10%来计算各人的考评成绩,那么谁将优先录取?考评项目成绩/分甲乙理论知识(笔试)8895模拟上课9590答辩889021.(6分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,直线y=-x+b分别交OA、AB于点C、D,且ΔBOD的面积是4.(1)求直线AO的解析式;(2)求直线CD的解析式;(3)若点M是x轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.22.(8分)如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿边BC向点C运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动设点F的运动时间为t秒.(1)如图1,连接DE,AF.若DE⊥AF,求t的值;(2)如图2,连结EF,DF.当t为何值时,△EBF∽△DCF?23.(8分)我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦苇的长度分别是多少?24.(8分)如图,直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,点E为线段AB中点,∠ABO的平分线BD与y轴相较于点D,点A、C关于点O对称.(1)求线段DE的长;(2)一个动点P从点D出发,沿适当的路径运动到直线BC上的点F,再沿射线CB方向移动2个单位到点G,最后从点G沿适当的路径运动到点E处,当P的运动路径最短时,求此时点G的坐标;(3)将△ADE绕点A顺时针方向旋转,旋转角度α(0<α≤180°),在旋转过程中DE所在的直线分别与直线BC、直线AC相交于点M、点N,是否存在某一时刻使△CMN为等腰三角形,若存在,请求出CM的长,若不存在,请说明理由.25.(10分)(1)--;(2)26.(10分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据众数和中位数的定义求解.【详解】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是1,所以中位数是1.

故选A.【点睛】本题考查众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.2、D【解析】

根据旋转的性质求出的值,根据勾股定理和阴影部分面积等于△ADB的面积减△BEF的面积,即可求得阴影部分的面积.【详解】旋转,,,,,,设,则,,,,..故选D.【点睛】本题考查了阴影部分的面积问题,掌握旋转的性质和三角形的面积公式是解题的关键.3、A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式4、C【解析】

根据方差的性质即可解答本题.【详解】C选项中数据是在数据1,2,3,4,5上都加10,故方差保持不变.故选:C.【点睛】本题考查了方差,一般一组数据加上(减去)相同的数后,方差不变.5、B【解析】

根据平移后阴影部分的面积恰好是长1cm,宽为1cm的矩形,再根据矩形的面积公式即可得出结论.【详解】解:∵平移后阴影部分的面积恰好是长为1cm,宽为1cm的矩形,∴S阴影=1×1=4cm1.故选B.【点睛】本题考查的是图形平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.6、D【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【详解】解:A、,不能构成直角三角形,故不符合题意;B、,不能构成直角三角形,故不符合题意;C、,不能构成直角三角形,故不符合题意;D、,能构成直角三角形,故符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7、C【解析】

①由平行四边形性质可得AB∥CD,由线段垂直平分线性质可得ME=MC,再根据等角的余角相等可得①正确;②构造△AME≌△DMG(ASA),即可证明②正确;③利用平行四边形性质、线段垂直平分线性质和AD=2AB可得四边形CDMN是菱形,依据菱形性质即可证明③正确;④S△CDM=S菱形CDMN,S四边形BEON<S菱形CDMN,④不一定成立;【详解】解:延长EM交CD的延长线于G,如图,

∵ABCD是平行四边形,

∴AB∥CD

∴∠AEM=∠G

∵CE⊥AB

∴CE⊥CD

∵MN垂直平分CE,

∴ME=MC

∴∠MEC=∠MCE

∵∠MEC+∠G=90°,∠MCE+∠DCM=90°

∴∠DCM=∠G

∴∠AEM=∠DCM

故①正确;

∵∠DCM=∠G

∴MC=MG

∴ME=MG

∵∠AME=∠DMG

∴△AME≌△DMG(ASA)

∴AM=DM

故②正确;

∵ABCD是平行四边形,

∴AB∥CD,AB=CD,AD∥BC,AD=BC

∵CE⊥AB,MN⊥CE

∴AB∥MN∥CD

∴四边形ABNM、四边形CDMN均为平行四边形

∴MN=AB

∵AM=MD=AD,AD=2AB

∴MD=CD=MN=NC

∴四边形CDMN是菱形

∴∠BCD=2∠DCM,

故③正确;

设菱形ABNM的高为h,则S△CDM=S菱形CDMN,S四边形BEON=(BE+ON)×h=ON×h

∵OM=(AE+CD)

∴CD<OM<AB

∴ON<CD

∴S四边形BEON<CD×h=S菱形CDMN,

故④不一定成立;

故选C.【点睛】本题主要考查平行四边形的性质,熟练掌握平行四边形的性质是解答本题的关键.8、B【解析】

将二元一次方程化为一元一次函数的形式,再根据k,b的取值确定直线不经过的象限.【详解】解:由得:,直线经过第一、三、四象限,不经过第二象限.故答案为:B【点睛】本题考查了一次函数与二元一次方程的关系及其图像与性质,根据k,b的值确定一次函数经过的象限是解题的关键.9、B【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误;B、调查某班学生的身高情况,适合全面调查,故B选项正确;C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误;D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误.故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、C【解析】

根据平行四边形、矩形、菱形、梯形的性质判断即可.【详解】解:A、“平行四边形的对角线相等”是假命题;B、“矩形的对角线平分对角”是假命题;C、“菱形的对角线互相平分”是真命题;D、“梯形的对角线互相垂直”是假命题.故选C.【点睛】正确的命题是真命题,错误的命题是假命题.二、填空题(每小题3分,共24分)11、<【解析】

要使两个分式的和为零,则必须两个分式都为0,进而计算a,b的值,代入比较大小即可.【详解】解:∵+=0,∴a﹣3=0,2﹣b=0,解得a=3,b=2,∴2,,∴.故答案为:<【点睛】本题主要考查根式为零时参数的计算,这是考试的重点知识,应当熟练掌握.12、144米1.【解析】

将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可.【详解】解:将道路分别向左、向上平移,得到草地为一个长方形,长方形的长为10-1=18(米),宽为10-1=8(米),则草地面积为18×8=144米1.故答案为:144米1.【点睛】本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.13、(+x)(-x)【解析】

理解实数范围内是要运算到无理数为止,即可解题.【详解】解:5-x2=(+x)(-x)【点睛】本题考查了因式分解,属于简单题,注意要求是实数范围内因式分解是解题关键.14、1.2【解析】

根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴AM的最小值是1.2.【点睛】本题考查了勾股定理,矩形的性质,熟练的运用勾股定理和矩形的性质是解题的关键.15、【解析】

由正方形和等边三角形的性质得出∠ABE=30°,AB=BE,由等腰三角形的性质和三角形内角和定理即可求出∠AEB的度数.【详解】∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵△EBC是等边三角形,∴BE=BC,∠EBC=60°,∴∠ABE=90°−60°=30°,AB=BE,∴∠AEB=∠BAE=(180°−30°)=1°;故答案为:1.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质,并能进行推理论证与计算是解决问题的关键.16、m=1n=1【解析】

先把常数项移到方程右边,再把方程两边都加上1,然后把方程作边写成完全平方形式,从而得到m、n的值.【详解】解:x2-2x=5,

x2-2x+1=1,

(x-1)2=1,

所以m=1,n=1.

故答案为1,1.【点睛】本题考查解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.17、-1【解析】

根据判别式的意义及一元二次方程的定义得到,且,然后解不等式即可求得k的范围,从而得出答案.【详解】解:根据题意知,且,解得:且,则非正整数k的值是,故答案为:.【点睛】本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.18、16【解析】

在y=x+1中,令y=0,得x+1=0,解得x=−1,∴点A的坐标为(−1,0),在y=−x+7中,令y=0,得−x+7=0,解得x=7,∴点B的坐标为(7,0),联立两直线解析式得,解得,∴点C的坐标为(3,4);即点C的纵坐标为4∵AB=7−(−1)=8,∴S△ABC=×8×4=16.故答案为16.三、解答题(共66分)19、8【解析】试题分析:用二次根式的除法则运算,然后化简后合并即可;试题解析:5÷﹣3+2==8.20、甲优先录取.【解析】

根据加权平均数的计算公式分别计算出甲、乙两人的成绩,再进行比较即得结果.【详解】解:甲的考评成绩是:88×30%+91×60%+88×10%=92.2,乙的考评成绩是:91×30%+90×60%+90×10%=91.1.答:甲优先录取.【点睛】本题考查了加权平均数的应用,属于基础题型,熟练掌握计算的方法是解题的关键.21、(1)y=2x;(2);(3)点M的坐标为(,0).【解析】

(1)先求出点A的坐标,然后设直线AO的解析式为y=kx,用待定系数法求解即可;(2)由面积法求出BD的长,从而求出点D的坐标,然后带入y=-x+b求解即可;(3)先求出点C的坐标,作点C关于x轴的对称点E,此时M到A、C的距离之和最小,求出直线AE的解析式,即可求出点M的坐标.【详解】(1)OB=4,AB=8,∠ABO=90°,∴A点坐标为(4,8),设直线AO的解析式为y=kx,则4k=8,解得k=2,即直线AO的解析式为y=2x;(2)OB=4,∠ABO=90°,=4,∴DB=2,∴D点的坐标为(4,2),把D(4,2)代入得:=6,∴直线CD的解析式为;(3)由直线与直线组成方程组为,解得:,∴点C的坐标为(2,4)如图,设点M使得MC+MA最小,作点C关于x轴的对称点E,可得点E的坐标为(2,-4),连结MC、ME、AE,可知MC=ME,所以M到A、C的距离之和MA+MC=MA+ME,又MA+ME大于等于AE,所以当MA+ME=AE时,M到A、C的距离之和最小,此时A、M、E成一条直线,M点是直线AE与在x轴的交点.所以设直线AE的解析式为,把A(4,8)和E(2,-4)代入得:,解得:,所以直线AE的解析式为,令得,所以点M的坐标为(,0).【点睛】本题考查了待定系数法求函数解析式,一次函数的交点等面积法求线段的长及轴对称最短问题,熟练掌握待定系数法是解答本题的关键.22、(1)t=1;(2)当时,△EBF∽△DCF;【解析】

(1)利用正方形的性质及条件,得出△ABF≌△DAE,由AE=BF列式计算.(2)利用△EBF∽△DCF,得出,列出方程求解.【详解】解:(1)∵DE⊥AF,∴∠AOE=90°,∴∠BAF+∠AEO=90°,∵∠ADE+∠AEO=90°,∴∠BAF=∠ADE,又∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠DAE=90°,在△ABF和△DAE中,,∴△ABF≌△DAE(ASA)∴AE=BF,∴1+t=2t,解得t=1;(2)如图2,∵四边形ABCD是正方形,∴AB=BC=CD=4,∵BF=2t,AE=1+t,∴FC=4-2t,BE=4-1-t=3-t,当△EBF∽△DCF时,,∴=,解得,t1=,t2=(舍去),故t=.所以当t=时,△EBF∽△DCF.【点睛】本题主要考查了四边形的综合题,利用了全等三角形的判定和性质,相似三角形的判定和性质,难度一般.23、水的深度是12尺,芦苇的长度是13尺.【解析】

找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【详解】解:设水的深度为x尺,如下图,根据题意,芦苇长:OB=OA=(x+1)尺,在Rt△OCB中,52+x2=(x+1)2解得:x=12,x+1=13所以,水的深度是12尺,芦苇的长度是13尺.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.24、(1)1;(2)(,);(3)6+﹣3或6++3或2﹣2或8.【解析】

(1)想办法证明DE⊥AB,利用角平分线的性质定理证明DE=OD即可解决问题;(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.(3)分三种情形:①如图1中,当CM=CN时,在AE上取一点P,使得AP=PN.设EN=x.②如图2中,当MN=MC时,作BP⊥MN于P,则四边形ADPB是矩形.③如图3中,当NC=MN时,D与N重合,作DP⊥BC于P.分别解直角三角形即可解决问题.【详解】解:(1)∵直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,∴A(0,3),B(,0),∴OA=3,OB=,∴tan∠ABO==,∴∠ABO=60°,∵BD平分∠ABO,∴∠DBO=30°,∴OD=OB•tan30°=1,DB=2OD=2,∴AD=DB=2,∴AE=EB,∴DE⊥AB,∵DO⊥OB,DB平分∠ABO,∴DE=DO=1.(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.∵E′(,),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论