




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市兰山区部分学校2024届八年级数学第二学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.把n边形变为边形,内角和增加了720°,则x的值为()A.6 B.5 C.4 D.32.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距离景点2100米 D.乙距离景点420米3.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90 B.中位数是90 C.平均数是90 D.极差是154.如图,在平行四边形ABCD中,F,G分别为CD,AD的中点,BF=2,BG=3,,则BC的长度为()A. B. C.2.5 D.5.用配方法解方程时,原方程应变形为()A. B. C. D.6.甲、乙两人分别骑自行车和摩托车从A地到B地,两人所行驶的路程与时间的关系如图所示,下面的四个说法:甲比乙早出发了3小时;乙比甲早到3小时;甲、乙的速度比是5:6;乙出发2小时追上了甲.其中正确的个数是A.1个 B.2个 C.3个 D.4个7.已知直线y=kx-4(k<0)与两坐标轴所围成的三角形面积等于4,则该直线的表达式为()A.y=-x-4 B.y=-2x-4 C.y=-3x+4 D.y=-3x-48.若是关于,的二元一次方程,则()A., B., C., D.,9.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.-=20 B.-=20 C.-= D.=10.一组数据4,5,7,7,8,6的中位数和众数分别是()A.7,7 B.7,6.5 C.6.5,7 D.5.5,7二、填空题(每小题3分,共24分)11.菱形的两条对角线长分别为10cm和24cm,则该菱形的面积是_________;12.菱形ABCD的对角线cm,,则其面积等于______.13.如图,矩形的对角线相交于点,过点作交于点,若,的面积为6,则___.14.已知中,,角平分线BE、CF交于点O,则______.15.若,则的值为__________,的值为________.16.在▱ABCD中,∠BAD的平分线AE把边BC分成5和6两部分,则▱ABCD的周长为_____.17.如图,菱形ABCD的对角线相交于点O,若AB=5,OA=4,则菱形ABCD的面积_____.18.如图,在中,,,平分,点是的中点,若,则的长为__________.三、解答题(共66分)19.(10分)如图,已知函数的图象为直线,函数的图象为直线,直线、分别交轴于点和点,分别交轴于点和,和相交于点(1)填空:;求直线的解析式为;(2)若点是轴上一点,连接,当的面积是面积的2倍时,请求出符合条件的点的坐标;(3)若函数的图象是直线,且、、不能围成三角形,直接写出的值.20.(6分)在平面直角坐标系xOy中,直线l1:过点A(3,0),且与直线l2:交于点B(m,1).(1)求直线l1:的函数表达式;(2)过动点P(n,0)且垂于x轴的直线与l1、l2分别交于点C、D,当点C位于点D上方时,直接写出n的取值范围.21.(6分)一次函数分别交x轴、y轴于点A、B,画图并求线段AB的长.22.(8分)学校新到一批实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟完成;(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?23.(8分)如图,在平面直角坐标系xOy中,一次函数与x轴交于点A,与y轴交于点B.将△AOB沿过点B的直线折叠,使点O落在AB边上的点D处,折痕交x轴于点E.(1)求直线BE的解析式;(2)求点D的坐标;24.(8分)将矩形纸片沿对角线翻折,使点的对应点(落在矩形所在平面内,与相交于点,接.(1)在图1中,①和的位置关系为__________________;②将剪下后展开,得到的图形是_________________;(2)若图1中的矩形变为平行四边形时(),如图2所示,结论①、②是否成立,若成立,请对结论②加以证明,若不成立,请说明理由25.(10分)解不等式组,并把不等式组的解集在数轴上表出来26.(10分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据内角和公式列出方程即可求解.【详解】把n边形变为边形,内角和增加了720°,根据内角和公式得(n+x-2)×180°-(n-2)×180°=720°,解得x=4,故选C.【点睛】此题主要考查多边形的内角和公式,解题的关键是熟知公式的运用.2、D【解析】
根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度==70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.3、C【解析】
由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C.故选C.4、A【解析】
延长AD、BF交于E,过点E作EM⊥BG,根据F是中点得到△CBF≌△DEF,得到BE=2BF=4,根据得到BM=BE=2,ME=2,故MG=1,再根据勾股定理求出EG的长,再得到DE的长即可求解.【详解】延长AD、BF交于E,∵F是中点,∴CF=DF,又AD∥BC,∴∠CBF=∠DEF,又∠CFB=∠DFE,∴△CBF≌△DEF,∴BE=2BF=4,过点E作EM⊥BG,∵,∴∠BEM=30°,∴BM=BE=2,ME=2,∴MG=BG-BM=1,在Rt△EMG中,EG==∵G为AD中点,∴DG=AD=DE,∴DE==,故BC=,故选A.【点睛】此题主要考查平行四边形的线段求解,解题的关键是熟知全等三角形的判定及勾股定理的运用.5、A【解析】
根据配方的原则,首先观察一次项的系数,进而给等式两边同时加上或减去一个数,从而构造完全平方式即可.【详解】根据配方的原则原式可化为:所以可得:因此可得故选A.【点睛】本题主要考查配方法的熟练应用,注意配方首先根据一次项的系数计算,配方即可.6、B【解析】分析:根据函数图象中所提供的信息进行分析判断即可.详解:(1)由图中信息可知,乙是在甲出发3小时后出发的,所以结论①正确;(2)由图中信息可知,甲是在乙到达终点3小时后到达的,所以结论②正确;(3)由题中信息可得:V甲=80÷8=10(km/小时)V乙=80÷2=40(km/小时),由此可得:V甲:V乙=1:4,所以结论③错误;(4)由图中信息和(3)中所求甲和乙的速度易得,乙出发后1小时追上甲,所以结论④不成立.综上所述,4个结论中正确的有2个.故选B.点睛:读懂题意,能够从函数图象中获取相关数据信息是解答本题的关键.7、B【解析】
先求出直线y=kx-1(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于1,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.【详解】解:直线y=kx-1(k<0)与两坐标轴的交点坐标为(0,-1)(,0),
∵直线y=kx-1(k<0)与两坐标轴所围成的三角形面积等于1,
∴×(-)×1=1,解得k=-2,
则直线的解析式为y=-2x-1.
故选:B.【点睛】本题考查用待定系数法求一次函数的解析式.根据三角形面积公式及已知条件,列出方程,求出k的值,即得一次函数的解析式.8、D【解析】
根据二元一次方程的定义可知,m、n应满足以下4个关系式:,解之即得.【详解】解:由题意是关于,的二元一次方程,于是m、n应满足,解得,,故选D.【点睛】本题考查了二元一次方程的定义,认真审题并列出m、n应满足的4个关系式是解决此题的关键.9、C【解析】
根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,
-=,
故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.10、C【解析】
根据中位数与众数的概念和求解方法进行求解即可.【详解】将数据从小到大排列:4、5、6、7、7、8,所以中位数为=6.5,众数是7,故选C.【点睛】本题考查了中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.二、填空题(每小题3分,共24分)11、110cm1.【解析】试题解析:S=×10×14=110cm1.考点:菱形的性质.12、【解析】
根据菱形的性质,菱形的面积等于两条对角线乘积的一半,代入数值计算即可。【详解】解:菱形ABCD的面积===【点睛】本题考查了菱形的性质:菱形的面积等于两条对角线乘积的一半。13、【解析】
首先连接EC,由题意可得OE为对角线AC的垂直平分线,可得CE=AE,S△AOE=S△COE=2,继而可得AE•BC=1,则可求得AE的长,即EC的长,然后由勾股定理求得答案.【详解】解:连接EC.∵四边形ABCD是矩形∴AO=CO,且OE⊥AC,∴OE垂直平分AC∴CE=AE,S△AOE=S△COE=2,∴S△AEC=2S△AOE=1.∴AE•BC=1,又∵BC=4,∴AE=2,∴EC=2.∴BE=故答案为:【点睛】本题考查了矩形的性质、勾股定理以及三角形的面积问题.此题难度适中,正确做出图形的辅助线是解题的关键.14、【解析】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.15、,【解析】
令,用含k的式子分别表示出,代入求值即可.【详解】解:令,则,所以,.故答案为:(1).,(2).【点睛】本题考查了分式的比值问题,将用含同一字母的式子表示是解题的关键.16、32或1【解析】
根据平行四边形的性质可得∠DAE=∠AEB,再由角平分线的性质和等腰三角形的性质可得AB=BE,然后再分两种情况计算即可.【详解】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=5,EC=6时,平行四边形ABCD的周长为:2(AB+BC)=2×(5+5+6)=32;②当BE=6,EC=5时,平行四边形ABCD的周长为:2(AB+BC)=2×(6+6+5)=1.故答案为32或1.【点睛】平行四边形的性质及等腰三角形的性质、角平分线的性质是本题的考点,根据其性质求得AB=BE是解题的关键.17、3【解析】
根据菱形的性质:菱形的两条对角线互相垂直可计算出该菱形的面积.【详解】解:因为四边形ABCD是菱形,所以AC⊥BD.在Rt△AOB中,利用勾股定理求得BO=1.∴BD=6,AC=2.∴菱形ABCD面积为×AC×BD=3.故答案为3.【点睛】本题考查了菱形的性质的灵活运用,熟练运行菱形的性质来求其面积是解决此题的关键.18、1【解析】
过点D作DE⊥AB于E,根据直角三角形两锐角互余求出∠A=10°,再根据直角三角形10°角所对的直角边等于斜边的一半求出DE,根据角平分线上的点到角的两边距离相等可得CD=DE,根据角平分线的定义求出∠CBD=10°,根据直角三角形10°角所对的直角边等于斜边的一半求出BD,再根据直角三角形斜边上的中线等于斜边的一半求解.【详解】如图,过点D作DE⊥AB于E,
∵∠ACB=90°,∠ABC=60°,
∴∠A=90°-60°=10°,
∴DE=AD=×6=1,
又∵BD平分∠ABC,
∴CD=DE=1,
∵∠ABC=60°,BD平分∠ABC,
∴∠CBD=10°,
∴BD=2CD=2×1=6,
∵P点是BD的中点,
∴CP=BD=×6=1.
故答案为:1.【点睛】此题考查含10度角的直角三角形,角平分线的性质,熟记各性质并作出辅助线是解题的关键.三、解答题(共66分)19、(1),直线的解析式为;(2)点的坐标为或;(3)的值为或或.【解析】
(1)将点坐标代入中,即可得出结论;将点,坐标代入中,即可得出结论;(2)先利用两三角形面积关系判断出,再分两种情况,即可得出结论;(3)分三种情况,利用两直线平行,相等或经过点讨论即可得出结论.【详解】解:(1)点在函数的图象上,,,直线过点、,可得方程组为,解得,直线的解析式为;故答案为:;(2)是与轴的交点,当时,,,坐标为,又的面积是面积的2倍,第一种情况,当在线段上时,,,即,∴,坐标,第二种情况,当在射线上时,,,,坐标,点的坐标为或;(3)、、不能围成三角形,直线经过点或或,①直线的解析式为,把代入到解析式中得:,,②当时,∵直线的解析式为,,③当时,∵直线的解析式为,,即的值为或或.【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,待定系数法,三角形的面积的求法,用分类讨论的思想解决问题是解本题的关键.20、(1);(2)【解析】
(1)利用求出点B的坐标,再将点A、B的坐标代入求出答案;(2)求出直线与直线的交点坐标即可得到答案.【详解】(1)解:∵直线l2:过点B(m,1),∴∴m=2,∴B(2,1),∵直线l1:过点A(3,0)和点B(2,1)∴,解得:,∴直线l1的函数表达式为(2)解方程组,得,当过动点P(n,0)且垂于x轴的直线与l1、l2分别交于点C、D,当点C位于点D上方时,即点P在图象交点的左侧,∴【点睛】此题考查一次函数的解析式,一次函数图象交点坐标与方程组的关系,(2)是难点,确定交点坐标后,在交点的左右两侧取点P通过作垂线即可判断出点P的位置.21、AB=.【解析】
先求A,B的坐标,再画图象,由勾股定理可求解.【详解】解:因为当x=0时,y=2;当y=0时,x=1,所以,与x轴的交点A(1,0),与y轴的交点B(0,2),所以,线段AB的图象是所以,AB=故答案为如图,【点睛】本题考核知识点:一次函数的图象.解题关键点:确定点A,B的坐标,由勾股定理求AB.22、(1)王师傅单独整理这批实验器材需要80分钟.(2)李老师至少要工作1分钟.【解析】
(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,根据李老师与工人王师傅共同整理20分钟的工作量+王师傅再单独整理了20分钟的工作量=1,可得方程,解出即可;(2)根据王师傅的工作时间不能超过30分钟,列出不等式求解.【详解】解:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,由题意,得:20(+)+20×=1,解得:x=80,经检验得:x=80是原方程的根.答:王师傅单独整理这批实验器材需要80分钟.(2)设李老师要工作y分钟,由题意,得:(1﹣)÷≤30,解得:y≥1.答:李老师至少要工作1分钟.考点:分式方程的应用;一元一次不等式的应用.23、(1)直线BE的解析式为y=x+2;(2)D(-3,).【解析】
(1)先求出点A、B的坐标,继而根据勾股定理求出AB的长,根据折叠可得BD=BO,DE=OE,从而可得AD的长,设DE=OE=m,则AE=OA-m,在直角三角形AED中利用勾股定理求出m,从而得点E坐标,继而利用待定系数法进行求解即可;(2)过点D作DM⊥AO,垂足为M,根据三角形的面积可求得DM的长,继而可求得点D的坐标.【详解】(1),令x=0,则y=2,令y=0,则,解得:x=-6,∴A(-6,0),B(0,2),∴OA=6,OB=2,∴AB==4,∵折叠,∴∠BDE=∠BOA=90°,DE=EO,BD=BO=2,∴∠ADE=90°,AD=AB-BD=2,设DE=EO=m,则AE=AO-OE=6-m,在Rt△ADE中,AE2=AD2+DE2,即(6-m)2=m2+(2)2,解得:m=2,∴OE=2,∴E(-2,0),设直线BE的解析式为:y=kx+b,把B、E坐标分别代入得:,解得:,∴直线BE的解析式为y=x+2;(2)过点D作DM⊥AO,垂足为M,由(1)DE=2,AE=AO-OE=4,∵S△ADE=,即,∴DM=,∴点D的纵坐标为,把y=代入,得,解得:x=-3,∴D(-3,).【点睛】本题考查了折叠的性质,勾股定理的应用,待定系数法求一次函数解析式,三角形的面积,点的坐标等,熟练掌握并灵活运用相关知识是解题的关键.注意数形结合思想的运用.24、(1)①平行;②菱形;(2)结论①、②都成立,理由详见解析.【解析】
(1)①由平行线的性质和折叠的性质可得∠DAC=∠ACE,由∠AB'C=∠ADC=90°,可证点A,点C,点D,点B'四点共圆,可得∠ADB'=∠ACE=∠DAC,可得AC∥B'D;②由菱形的定义可求解;
(2)都成立,设点E的对应点为F,由平行线的性质和折叠的性质可得∠DAC=∠ACE,AF=AE,CE=CF,可得AF=AE=CE=CF,可得四边形AECF是菱形.【详解】解:(1)①∵四边形ABCD是矩形
∴AD∥BC,∠B=∠ADC=90°
∴∠DAC=∠ACB
∵将矩形纸片ABCD沿对角线AC翻折,
∴∠AB'C=∠B=90°,∠ACB=∠ACE
∴∠DAC=∠ACE,
∴AE=EC
∵∠AB'C=∠ADC=90°
∴点A,点C,点D,点B'四点共圆,
∴∠ADB'=∠ACE,
∴∠ADB'=∠DAC
∴B'D∥AC,
故答案为:平行
②∵将△AEC剪下后展开,AE=EC
∴展开图形是四边相等的四边形,
∴展开图形是菱形(2)都成立,
如图2,设点E的对应点为F,
∵四边形ABCD是平行四边形
∴AD∥BC,
∴∠DAC=∠ACB
∵将矩形纸片ABCD沿对角线AC翻折,
∴∠ACB=∠ACE,AF=AE,CE=CF
∴∠DAC=∠ACE,
∴AE=EC
∴AF=AE=CE=CF四边形是菱形.【点睛】本题是四边形综合题,考查了矩形的性质,平行四边形的性质,折叠的性质,菱形的判定,灵活运用这些性质进行推理是本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陇东学院《外国文学名著选读(二)》2023-2024学年第一学期期末试卷
- 陕西中医药大学《外国戏剧史》2023-2024学年第一学期期末试卷
- 陕西学前师范学院《小学数学教学与研究(二)》2023-2024学年第二学期期末试卷
- 陕西旅游烹饪职业学院《基于C#的WinForm应用程序开发课程设计》2023-2024学年第二学期期末试卷
- 陕西理工大学《传热学》2023-2024学年第一学期期末试卷
- 陕西省兴平市秦岭中学2025年第二次高中毕业生复习统一检测试题化学试题含解析
- 陕西省安康市汉滨高中2024-2025学年高三模拟考试(二)历史试题试卷含解析
- 陕西省尚德中学2025届高三下学期月考5(期末)语文试题含解析
- 陕西省延安市重点名校2024-2025学年初三化学试题第二次学情调查试卷含解析
- 陕西省汉中南郑区2025届六年级下学期5月模拟预测数学试题含解析
- 有关商品房预售合同样本合同样本7篇
- 外交学院专职辅导员招聘真题2024
- 市场摊位租赁合同
- 浙江省宁波市“十校”2025届高三下学期3月联考英语试卷答案
- 水声通信组网技术第二讲-水声信道传输特性
- 2025年3月版安全环境职业健康法律法规标准文件清单
- 2025年河南工业和信息化职业学院单招职业技能测试题库参考答案
- 2025年吉林铁道职业技术学院单招职业技能测试题库及参考答案
- 2025年春统编版七年级语文下册 第三单元 阅读综合实践(公开课一等奖创新教案+)
- 信息通信工程安全施工指南
- DB33T 1134-2017 静钻根植桩基础技术规程
评论
0/150
提交评论