安徽省亳州利辛县联考2024届八年级数学第二学期期末经典试题含解析_第1页
安徽省亳州利辛县联考2024届八年级数学第二学期期末经典试题含解析_第2页
安徽省亳州利辛县联考2024届八年级数学第二学期期末经典试题含解析_第3页
安徽省亳州利辛县联考2024届八年级数学第二学期期末经典试题含解析_第4页
安徽省亳州利辛县联考2024届八年级数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省亳州利辛县联考2024届八年级数学第二学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在边长为2的菱形中,,,,则的周长为()A.3 B.6 C. D.2.已知y=m+3xm2-8是正比例函数,则A.8 B.4 C.±3 D.33.如图,在△ABC中,AB=3,BC=4,AC=5,点D在边BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.2 B.3 C.4 D.54.下列函数中y是x的一次函数的是()A.y=1x B.y=3x+1 C.y=5.若y=x+2–b是正比例函数,则b的值是()A.0 B.–2 C.2 D.–0.56.(1)中共有1个小正方体,其中一个看的见,0个看不见;(2)中共有8个小正方体,其中7个看得见,一个看不见;(3)中共有27个小正方体,其中19个看得见,8个看不见;…,则第(5)个图中,看得见的小正方体有()个.A.100 B.84 C.64 D.617.等边三角形的边长为2,则该三角形的面积为()A.4 B. C.2 D.38.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个 B.2个 C.3个 D.4个9.坐标平面上,有一线性函数过(-3,4)和(-7,4)两点,则此函数的图象会过()A.第一、二象限 B.第一、四象限C.第二、三象限 D.第二、四象限10.下列矩形都是由大小不等的正方形按照一定规律组成,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…则第⑥个矩形的周长为()①②③ ④A.42 B.46 C.68 D11.如图,已知正方形ABCD边长为1,,,则有下列结论:①;②点C到EF的距离是2-1;③的周长为2;④,其中正确的结论有()A.4个 B.3个 C.2个 D.1个12.如图,表示A点的位置,正确的是()A.距O点3km的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在O点北偏东50°方向,距O点3km的地方二、填空题(每题4分,共24分)13.《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程求出AC的长为____________.14.一组数据;1,3,﹣1,2,x的平均数是1,那么这组数据的方差是_____.15.如图,在矩形中,分别是边和的中点,,则的长为__________.16.如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________17.把二次函数y=-2x2-4x-1的图象向上平移3个单位长度,再向右平移4个单位长度,则两次平移后的图象的解析式是_____________;18.如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,__.三、解答题(共78分)19.(8分)在平面直角坐标系中,如果点、点为某个菱形的一组对角的顶点,且点、在直线上,那么称该菱形为点、的“极好菱形”.如图为点、的“极好菱形”的一个示意图.已知点的坐标为,点的坐标为.(1)点,,中,能够成为点、的“极好菱形”的顶点的是.(2)若点、的“极好菱形”为正方形,求这个正方形另外两个顶点的坐标.(3)如果四边形是点、的“极好菱形”.①当点的坐标为时,求四边形的面积.②当四边形的面积为8,且与直线有公共点时,直接写出的取值范围.20.(8分)张老师打算在小明和小白两位同学之间选一位同学参加数学竞赛,他收集了小明、小白近期10次数学考试成绩,并绘制了折线统计图(如图所示)项目众数中位数平均数方差最高分小明8585小白70,10085100(1)根据折线统计图,张老师绘制了不完整的统计表,请你补充完整统计表;(2)你认为张老师会选择哪位同学参加比赛?并说明你的理由21.(8分)已知三个实数x,y,z满足,求的值.22.(10分)某超市出售甲、乙、丙三种糖果,其售价分别为5元/千克,12元/千克,20元/千克,为满足客多样化需求,超市打算把糖果混合成杂拌糖出售,如果按照如图所示的扇形统计图中甲、乙、丙三种糖果的比例混合,这种新混合的杂排糖的售价应该为多少元/千克?23.(10分)如图,四边形是正方形,是边所在直线上的点,,且交正方形外角的平分线于点.(1)当点在线段中点时(如图①),易证,不需证明;(2)当点在线段上(如图②)或在线段延长线上(如图③)时,(1)中的结论是否仍然成立?请写出你的猜想,并选择图②或图③的一种结论给予证明.24.(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点。已知点A在格点,请在给定的网格中按要求画出图形.(1)以为顶点在图甲中画一个面积为21的平行四边形且它的四个顶点都在格点。(2)以为顶点在图乙中画一个周长为20的菱形且它的四个顶点都在格点。25.(12分)有一块田地的形状和尺寸如图所示,求它的面积.26.如图,在中,为边的中点,过点作,与的延长线相交于点,为延长上的任一点,联结、.(1)求证:四边形是平行四边形;(2)当为边的中点,且时,求证:四边形为矩形.

参考答案一、选择题(每题4分,共48分)1、C【解析】

利用菱形的性质可得,AD=AB=BC=CD=2,∠ADC=120°由30°的直角三角形可得利用勾股定理得同理可得,∠FDC=30°,可证△DEF是等边三角形继而可得△DEF的周长为【详解】解:在菱形ABCD中,AD=AB=BC=CD=2∵DE⊥AB∴∠AED=90°∵∠A=60°∴∠ADE=30°,∠ADC=120°∴∴同理,∠FDC=30°∴∠EDF=60°,∵∴△DEF是等边三角形∴∴△DEF的周长为故答案为:C【点睛】本题考查了菱形的性质以及勾股定理和等边三角形的判定,正确掌握菱形的性质及含30°的直角三角形的性质是解题的关键.2、D【解析】

直接利用正比例函数的定义分析得出即可.【详解】∵y=(m+2)xm2﹣8是正比例函数,∴m2﹣8=2且m+2≠0,解得m=2.故选:D.【点睛】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.3、B【解析】

由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【详解】在中,∴,,,∴.∴为直角三角形,且.∵四边形是平行四边形,∴,.∴当取最小值时,线段最短,此时.∴是的中位线.∴.∴.故选B.【点睛】本题考查了勾股定理逆定理,平行四边形的性质,三角形的中位线以及垂线段最短.此题难度适中,注意掌握数形结合思想的应用.4、B【解析】

利用一次函数的定义即能找到答案.【详解】选项A:含有分式,故选项A错误;选项B:满足一次函数的概念,故选项B正确.选项C:含有分式,故选项C错误.选项D:含有二次项,故选项D错误.故答案为:B.【点睛】此题考查一次函数的定义,解题关键在于掌握其定义.5、C【解析】

根据正比例函数的定义可得关于b的方程,解出即可.【详解】解:由正比例函数的定义可得:2-b=0,解得:b=2.故选C.【点睛】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.6、D【解析】

根据前3个能看到的小正方体的数量找到规律,利用规律即可解题.【详解】(1)中共有1个小正方体,其中一个看的见,0个看不见,即;(2)中共有8个小正方体,其中7个看得见,一个看不见,即;(3)中共有27个小正方体,其中19个看得见,8个看不见,即;……第(5)个图中,看得见的小正方体有即个;故选:D.【点睛】本题主为图形规律类试题,找到规律是解题的关键.7、B【解析】∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC⋅AD=×2×=,故选B.8、B【解析】

根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.9、A【解析】

根据该线性函数过点(-3,4)和(-7,4)知,该直线是y=4,据此可以判定该函数所经过的象限.【详解】∵坐标平面上有一次函数过(-3,4)和(-7,4)两点,∴该函数图象是直线y=4,∴该函数图象经过第一、二象限.故选:A.【点睛】本题考查了一次函数的性质.解题时需要了解线性函数的定义:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.一次函数在平面直角坐标系上的图象为一条直线.10、C【解析】试题分析:观察图形:第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,通过计算第=4\*GB3④矩形的周长为26,前4个矩形的周长有这样的一个规律,第③个的矩形的周长=第①个矩形的周长+第②个矩形的周长,即16=6+10;第=4\*GB3④个的矩形的周长=第=3\*GB3③个矩形的周长+第②个矩形的周长,即26=10+16;第=5\*GB3⑤个的矩形的周长=第=3\*GB3③个矩形的周长+第=4\*GB3④个矩形的周长,即=26+16=42;第=6\*GB3⑥个的矩形的周长=第=4\*GB3④个矩形的周长+第=5\*GB3⑤个矩形的周长,即=26+42=48考点:矩形的周长点评:本题考查矩形的周长,通过前四个2的周长找出规律是本题的关键,考查学生的归纳能力11、C【解析】

先证明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可对①进行判断;连接EF、AC,它们相交于点H,如图,利用Rt△ABE≌Rt△ADF得到BE=DF,则CE=CF,接着判断AC垂直平分EF,AH平分∠EAF,于是利用角平分线的性质定理得到EB=EH,FD=FH,则可对③④进行判断;设BE=x,则EF=2x,CE=1-x,利用等腰直角三角形的性质得到2x=(1-x),解方程,则可对②进行判断.【详解】解:∵四边形ABCD为正方形,

∴AB=AD,∠BAD=∠B=∠D=90°,

在Rt△ABE和Rt△ADF中,,

∴Rt△ABE≌Rt△ADF(HL),

∴∠1=∠2,

∵∠EAF=45°,

∴∠1=∠2=∠22.5°,所以①正确;

连接EF、AC,它们相交于点H,如图,

∵Rt△ABE≌Rt△ADF,

∴BE=DF,

而BC=DC,

∴CE=CF,

∵AE=AF,

∴AC垂直平分EF,AH平分∠EAF,

∴EB=EH,FD=FH,

∴BE+DF=EH+HF=EF,所以④错误;

∴△ECF的周长=CE+CF+EF=CE+BE+CF+DF=CB+CD=1+1=2,所以③正确;

设BE=x,则EF=2x,CE=1-x,

∵△CEF为等腰直角三角形,

∴EF=CE,即2x=(1-x),解得x=-1,

∴BE=-1,

Rt△ECF中,EH=FH,

∴CH=EF=EH=BE=-1,

∵CH⊥EF,

∴点C到EF的距离是-1,

所以②错误;

本题正确的有:①③;

故选:C.【点睛】本题考查四边形的综合题:熟练掌握正方形的性质和角平分线的性质定理.解题的关键是证明AC垂直平分EF.12、D【解析】

用方向角和距离表示位置.【详解】如图,可用方向角和距离表示:A在O点北偏东50°方向,距O点3km的地方.故选D【点睛】本题考核知识点:用方向角和距离表示位置.解题关键点:理解用方向角和距离表示位置的方法.二、填空题(每题4分,共24分)13、.【解析】

设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【详解】解:设AC=x.∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC1+BC1=AB1,即x1+31=(10﹣x)1.解得:x.故答案为:【点睛】本题考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.14、1【解析】

先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x1,…xn的平均数为,),则方差.【详解】解:x=1×5﹣1﹣3﹣(﹣1)﹣1=0,s1=[(1﹣1)1+(1﹣3)1+(1+1)1+(1﹣1)1+(1﹣0)1]=1.故答案为1.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x1,…xn的平均数为,),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15、6【解析】

连接AC,根据三角形中位线性质可知AC=2EF,最后根据矩形对角线相等进一步求解即可.【详解】如图所示,连接AC,∵E、F分别为AD、CD的中点,EF=3,∴AC=2EF=6,∵四边形ABCD为矩形,∴BD=AC=6,故答案为:6.【点睛】本题主要考查了三角形中位线性质与矩形性质的综合运用,熟练掌握相关概念是解题关键.16、2【解析】

解:∵四边形ABCD是菱形,AC=2,BD=,∴∠ABO=∠CBO,AC⊥BD.∵AO=1,BO=,∴AB=2,∴sin∠ABO==∴∠ABO=30°,∴∠ABC=∠BAC=60°.由折叠的性质得,EF⊥BO,BE=EO,BF=FO,∠BEF=∠OEF,;∵∠ABO=∠CBO,∴BE=BF,∴△BEF是等边三角形,∴∠BEF=60°,∴∠OEF=60°,∴∠AEO=60°,∵∠BAC=60°.∴△AEO是等边三角形,,∴AE=OE,∴BE=AE,同理BF=FC,∴EF是△ABC的中位线,∴EF=AC=1,AE=OE=1.同理CF=OF=1,∴五边形AEFCD的周长为=1+1+1+2+2=2.故答案为2.17、y=-2x2+12x-2【解析】

先把抛物线化为顶点式,再按照“左加右减,上加下减”的规律,即可求出平移后的函数表达式.【详解】解:把抛物线的表达式化为顶点坐标式,y=-2(x+1)2+1.

按照“左加右减,上加下减”的规律,向上平移3个单位,再向右平移4个单位,得y=-2(x+1-4)2+1+3=-2(x-3)2+4=-2x2+12x-2.

故答案为:y=-2x2+12x-2.【点睛】本题考查二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.同时考查了学生将一般式转化顶点式的能力.18、或1【解析】

当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示,连结AC,在Rt△ABC中,AB=1,BC=12,∴AC==13,∵将ΔABE沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即将ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,设:,则,,,由勾股定理得:,解得:;②当点B′落在AD边上时,如图2所示,此时ABEB′为正方形,∴BE=AB=1,综上所述,BE的长为或1,故答案为:或1.【点睛】本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.三、解答题(共78分)19、(1),;(2)这个正方形另外两个顶点的坐标为、;(3)①;②的取值范围是【解析】

(1)根据“极好菱形”的定义判断即可;(2)根据点、的“极好菱形”为正方形求解即可;(3)①四边形MNPQ是点M、P的“极好菱形”,点的坐标为时,求四边形是正方形,求其面积即可;②根据菱形的面积公式求得菱形另一条对角线的长,再由与直线有公共点,求解即可.【详解】解:(1)如图1中,观察图象可知:、能够成为点,的“极好菱形”顶点.故答案为:,;(2)如图2所示:∵点的坐标为,点的坐标为,∴.∵“极好菱形”为正方形,其对角线长为,∴这个正方形另外两个顶点的坐标为、(3)①如图2所示:∵,,,∴,.∵四边形是菱形,∴四边形是正方形.∴.②如图3所示:∵点的坐标为,点的坐标为,∴,∵四边形的面积为8,∴,即,∴,∵四边形是菱形,∴,,,作直线,交轴于,∵,∴,∴,∵和在直线上,∴,∴是等腰直角三角形,∴,∴与重合,即在轴上,同理可知:在轴上,且,由题意得:四边形与直线有公共点时,的取值范围是.【点睛】本题考查了菱形的性质,根据题目中所给的知识获取有用的信息是解此题的关键,本题综合性较强,有一定的难度.20、(1)90,90,100;85,145;(2)选择小明同学,理由见解析.【解析】

(1)先根据折线统计图得出两人的成绩,再根据众数、中位数、平均数和方差的定义计算可得;(2)根据众数、中位数、平均数和方差的意义解答,合理即可得.【详解】.解:(1)小明同学的成绩为:70、70、80、80、90、90、90、90、90、100,所以小明成绩的众数为90、中位数为90、最高分为100;小白同学的成绩为:70、70、70、80、80、90、90、100、100、100,所以小白同学成绩的平均数为=85,则方差为×[3×(70﹣85)2+2×(80﹣85)2+2×(90﹣85)2+3×(100﹣85)2]=145,补全表格如下:项目众数中位数平均数方差最高分小明90908585100小白70,1008585145100(2)选择小明同学,∵小明、小白的平均成绩相同,而小明成绩的方差较小,发挥比较稳定,∴选择小明同学参加比赛.【点睛】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.21、4【解析】

求得到,然后求出,分子分母同除以xyz得,即可求解。【详解】解:∵∴∴分子分母同除以xyz得=4【点睛】本题考查了条件代数式求值问题,关键在于观察条件和所求代数式直接的联系;本题的联系在于倒数的应用和分式基本性质的应用。22、这种新混合的杂排糖的售价应该为10.1元/千克.【解析】

由扇形统计图中可以得到甲、乙、丙三种糖果所占的比例,然后根据加权平均数的计算方法求出结果即可.【详解】丙对应的百分比为1-50%-30%=20%∴这种新混合物的杂拌糖的售价应该为5×50%+12×30%+20×20%=10.1(元/千克)答:这种新混合的杂排糖的售价应该为10.1元/千克.【点睛】考查扇形统计图的特征、加权平均数的计算方法,明确和理解加权平均数中“权”是正确解答的前提.23、(1)见解析;(2)成立,理由见解析.【解析】

(1)图①在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;(2)图②在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;图③在BA的延长线上取一点N,使AN=CE,连接NE,然后证明△ANE≌△ECF,从而可得到AE=EF.【详解】解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论