




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市捷胜中学2024年八年级数学第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某校准备从甲、乙、丙、丁四个科技小组中选出一组,参加区中小学科技创新竞赛,表格记录了各组平时成绩的平均数(单位:分)及方差(单位:分2):甲乙丙丁平均数92989891方差11.20.91.8若要选出一个成绩好且状态稳定的组去参赛,那么应选的组是()A.甲 B.乙 C.丙 D.丁2.如图,在Rt△ABC中,∠C=90°,AB=2BC,则∠A=()A.15° B.30° C.45° D.60°3.在平行四边形ABCD中,∠A=110°,∠B=70°,则∠C的度数是()A.70° B.90° C.110° D.130°4.由线段a,b,c可以组成直角三角形的是()A.a=5,b=8,c=7 B.a=2,b=3,c=4C.a=24,b=7,c=25 D.a=5,b=5,c=65.如图,在平行四边形中,对角线交于点,并且,点是边上一动点,延长交于点,当点从点向点移动过程中(点与点,不重合),则四边形的变化是()A.平行四边形→菱形→平行四边形→矩形→平行四边形B.平行四边形→矩形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→正方形→平行四边形D.平行四边形→矩形→菱形→正方形→平行四边形6.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为().A. B. C. D.7.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.3,4 B.4,3 C.3,3 D.4,48.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼9.一组数据2,7,6,3,4,7的众数和中位数分别是()A.7和4.5 B.4和6 C.7和4 D.7和510.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩.根据统计图中的信息可得,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.甲队员成绩的方差比乙队员的大C.甲队员成绩的中位数比乙队员的大D.乙队员成绩的方差比甲队员的大11.点P(2,5)经过某种图形变化后得到点Q(﹣2,5),这种图形变化可以是()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.上下平移12.若(x+y)3-xy(x+y)=(x+y)·M(x+y≠0),则M是()A.x2+y2B.x2-xy+y2C.x2-3xy+y2D.x2+xy+y2二、填空题(每题4分,共24分)13.若分式的值为零,则__________.14.将直线y=2x+1向下平移3个单位长度后所得直线的表达式是______.15.如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数的图象经过P,D两点,则AB的长是______.16.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为______.17.若,则等于______.18.如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是___________度.(温馨提示:等腰梯形是一组对边平行,且同一底边上两底角相等的四边形)三、解答题(共78分)19.(8分)暑假期间,两名教师计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社经协商,甲旅行社的优惠条件是:两名教师全额收费,学生都按七折收费;乙旅行社的优惠条件是:教师、学生都按八折收费请你帮他们选择一下,选哪家旅行社比较合算.20.(8分)如图所示的方格纸中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.在图中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形.21.(8分)某花卉基地出售文竹和发财树两种盆栽,其单价为:文竹盆栽12元/盆,发财树盆栽15元/盆。如果同一客户所购文竹盆栽的数量大于800盆,那么每盆文竹可降价2元.某花卉销售店向花卉基地采购文竹400盆~900盆,发财树若干盆,此销售店本次用于采购文竹和发财树恰好花去12000元.然后再以文竹15元,发财树20元的单价实卖出.若设采购文竹x盆,发财树y盆,毛利润为W元.(1)当时,y与x的数量关系是_______,W与x的函数解析式是_________;当时,y与x的数量关系是___________,W与x的函数解析式是________;(2)此花卉销售店应如何采购这两种盆栽才能使获得毛利润最大?22.(10分)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.23.(10分)如图,在平面直角坐标系中,位于第二象限的点在反比例函数的图像上,点与点关于原点对称,直线经过点,且与反比例函数的图像交于点.(1)当点的横坐标是-2,点坐标是时,分别求出的函数表达式;(2)若点的横坐标是点的横坐标的4倍,且的面积是16,求的值.24.(10分)如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.25.(12分)在2018年俄罗斯世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元?26.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)参加比赛有_____名运动员,图①中a的值是_____,补全条形统计图.(2)统计的这组初赛成绩数据的众数是_____,中位数是_____,平均数是_____.(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
参考答案一、选择题(每题4分,共48分)1、C【解析】
先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【详解】因为乙组、丙组的平均数比甲组、丁组大,
而丙组的方差比乙组的小,
所以丙组的成绩比较稳定,
所以丙组的成绩较好且状态稳定,应选的组是丙组.
故选:C.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2、B【解析】
逆用直角三角形的性质:30度角所对的直角边等于斜边的一半,即可得出答案.【详解】在Rt△ABC中,∵∠C=90°,AB=2BC,∴∠A=30°.故选B.【点睛】本题考查了直角三角形的性质.熟练应用直角三角形的性质:30度角所对的直角边等于斜边的一半是解题的关键.3、C【解析】
由平行四边形ABCD,根据平行四边形的性质得到∠A=∠C,即可求出答案.【详解】∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A=110°,∴∠C=110°.故选:C.【点睛】本题主要考查对平行四边形的性质的理解和掌握,题目比较典型.4、C【解析】
由勾股定理的逆定理,只要验证两条较短边的平方和是否等于最长边的平方即可.【详解】52+72≠82,故不是直角三角形,故选项A错误;22+32≠42,故不是直角三角形,故选项B错误;72+242=252,故是直角三角形,故选项C正确;52+52≠62,故不是直角三角形,故选项D错误.
故选:C.【点睛】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、A【解析】
根据图形结合平行四边形、矩形、菱形的判定逐项进行判断即可.【详解】解:点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,
当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,
当15°<∠EOD<75°时,四边形AFCE为平行四边形,
当∠EOD=75°时,∠AEF=90°,四边形AFCE为矩形,
当75°<∠EOD<105°时,四边形AFCE为平行四边形,
故选A.【点睛】本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力.6、C【解析】
设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【详解】如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选C.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.7、C【解析】
根据众数,中位数,平均数的定义即可解答.【详解】解:已知一组数据2,3,4,x,1,4,3有唯一的众数4,只有当x=4时满足条件,故平均数==3,中位数=3,故答案选C.【点睛】本题考查众数,中位数,平均数的概念,熟悉掌握是解题关键.8、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.9、D【解析】试题解析:这组数据按照从小到大的顺序排列为:2,3,4,6,7,7,则众数为:7,中位数为:故选D.考点:1.众数;2.中位数.10、B【解析】
根据平均数的公式:平均数=所有数之和再除以数的个数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可;中位数就是最中间的数或最中间两个数的平均数.【详解】解:(1)甲队员10次射击的成绩分别为6,7、7,7,1,1,9,9,9,10;
甲10次射击成绩的平均数=(6+3×7+2×1+3×9+10)÷10=1,
方差=[(6-1)2+3×(7-1)2+2×(1-1)3+3×(9-1)2+(10-1)2]=1.4;中位数:1.(2)乙队员9次射击的成绩分别为6,7,7,1,1,1,9,9,10;
乙9次射击成绩的平均数=(6+2×7+3×1+2×9+10)÷9=1,
方差=[(6-1)2+2×(7-1)2+3×(1-1)3+2×(9-1)2+(10-1)2]≈1.3;中位数:1.两者平均数和中位数相等,甲的方差比乙大.故选B.【点睛】本题考查平均数、方差的定义和公式;熟练掌握平均数和方差的计算是解决问题的关键.11、B【解析】
根据平面内两点关于y轴对称的点,横坐标互为相反数,纵坐标不变从而得出结论【详解】∵点P(2,5)经过某种图形变化后得到点Q(﹣2,5),∴这种图形变化可以是关于y轴对称.故选B.【点睛】此题主要考查平面内两点关于y轴对称的点坐标特征12、D【解析】分析:运用提公因式法将等式左边的多项式进行因式分解即可求解.详解:(x+y)3-xy(x+y)=(x+y)[(x+y)2-xy]=(x+y)(x2+xy+y2)=(x+y)·M∴M=x2+xy+y2故选D.点睛:此题主要考查了提取公因式法的应用以及完全平方公式的应用,正确运用(x+y)2=x2+2xy+y2是解题关键.二、填空题(每题4分,共24分)13、-1【解析】
直接利用分式的值为零则分子为零进而得出答案.【详解】解:分式的值为零,则a+1=0,解得:a=-1.故答案为-1.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.14、y=1x-1【解析】
直线y=1x+1向下平移3个单位长度,根据函数的平移规则“上加下减”,可得平移后所得直线的解析式为y=1x+1﹣3=1x﹣1.考点:一次函数图象与几何变换.15、2【解析】
设D(m,),则P(2m,),作PH⊥AB于H.根据正方形性质,构建方程可解决问题.【详解】解:设D(m,),则P(2m,),作PH⊥AB于H.故答案为:2【点睛】本题考核知识点:反比例函数的图象、正方形性质.解题关键点:利用参数构建方程解决问题.16、1.【解析】试题分析:∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D,OB=3,OD=2,∴AB=2,∴阴影部分的面积之和为3×2=1.故答案为1.考点:中心对称.17、【解析】
依据比例的基本性质,即可得到5a=7b,进而得出=.【详解】解:∵,∴5a-5b=2b,即5a=7b,∴=,故答案为:.【点睛】本题主要考查了分式的值,解决问题的关键是利用比例的基本性质进行化简变形.18、1【解析】
仔细观察可发现等腰梯形的三个钝角的和是360°,从而可求得其钝角的度数.【详解】解:根据条件可以知道等腰梯形的三个钝角的和是360°,因而这个图案中等腰梯形的底角是360°÷3=1°,故答案为:1.【点睛】本题考查了平面镶嵌(密铺)和等腰梯形的性质,正确观察图形,得到梯形角的关系是解题的关键.三、解答题(共78分)19、当两名家长带领的学生少于4人时,应该选择乙旅行社;当两名家长带领的学生为4人时,选择甲、乙两家旅行社都一样;当两名家长带领的学生多于4人时,应该选择甲旅行社.
【解析】
(1)根据甲旅行社的收费=两名家长的全额费用+学生的七折费用,可得到y1与x的函数关系式;再根据乙旅行社的收费=两名家长的八折费用+学生的八折费用,可得到y2与x的函数关系式;
(2)首先分三种情况讨论:①y1>y2,②y1=y2,③y1<y2,针对每一种情况,分别求出对应的x的取值范围,然后比较哪种情况下选谁更合适,即可判断选择哪家旅行社.解答:【详解】解:设x名学生,则在甲旅行社花费:y1=,在乙旅行社的花费:y2=,当在乙旅行社的花费少时:y1>y2,解得;在两家花费相同时:y1=y2,解得;当在甲旅行社的花费少时:y1<y2,解得.综上,可得当两名家长带领的学生少于4人时,应该选择乙旅行社;当两名家长带领的学生为4人时,选择甲、乙两家旅行社都一样;当两名家长带领的学生多于4人时,应该选择甲旅行社.【点睛】本题考查了一次函数的应用:根据题意列出一次函数关系式y=kx+b(k≠0),然后比较函数值的大小得到对应的x的取值范围,从而确定省钱的方案.20、见解析【解析】
本题是直角三角形定义的应用问题,如果三角形有一个内角是直角,那么这个三角形就是直角三角形.根据三角形内角和定理,三角形中是直角的内角最多只有一个.从图中可以看出线段AB没有经过任何一个小正方形的边,因此从点A、B处构造直角比较困难;所以考虑在点C处构造直角,通过点A和点B分别作水平和竖直的直线,则直线交点就是点C的位置.【详解】过点A作竖直的直线,过点B作水平的直线,交点处就是点C,如图①;或者过点A作水平的直线,过点B作竖直的直线,交点处就是点C,如图②.【点睛】本题考查直角三角形的定义、勾股定理和勾股定理的逆定理,解答的关键是掌握直角三角形的定义、勾股定理和勾股定理的逆定理.21、(1)当时,(或填),;当时,(或填),;(2)采购文竹900盆,发财树200盆,毛利润最大为5500元【解析】
(1)根据题意,可直接列出关系式;(2)根据题意,分情况进行分析,进而得出采购文竹900盆,发财树200盆,毛利润最大为5500元.【详解】(1)根据题意,可得当时,(或填),即;当时,(或填),即;(2)当时,∵,W随着x的增大而减小∴当x取400时,,W有最大值3600,当时,∵,W随着x的增大而增大∴当x取900时,,W有最大值5500,综上所述,采购文竹900盆,发财树200盆,毛利润最大为5500元【点睛】此题主要考查一次函数的实际应用,熟练掌握,即可解题.22、(1)证明见解析;(2)BM=ME=;(3)证明见解析.【解析】
(1)如图1,延长AB交CF于点D,证明BM为△ADF的中位线即可.(2)如图2,作辅助线,推出BM、ME是两条中位线.(3)如图3,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME.【详解】(1)如图1,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD.∴点B为线段AD的中点.又∵点M为线段AF的中点,∴BM为△ADF的中位线.∴BM∥CF.(2)如图2,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=AD=a,∴点B为AD中点,又点M为AF中点.∴BM=DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a.∴点E为FG中点,又点M为AF中点.∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a.∴BM=ME=.(3)如图3,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD.∴点B为AD中点.又点M为AF中点,∴BM=DF.延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG.∴点E为FG中点.又点M为AF中点,∴ME=AG.在△ACG与△DCF中,∵,∴△ACG≌△DCF(SAS).∴DF=AG,∴BM=ME.23、(1),;(2).【解析】
(1)先将点C坐标代入,利用待定系数法可求得y1的解析式,继而求得点A的坐标,点B坐标,根据B、C坐标利用待定系数法即可求得y2的解析式;(2)分别过点作轴于点,轴于点,连接,由三角形中线的性质可得,再根据反比例函数的比例系数的几何意义可得,从而可得,设点的横坐标为,则点坐标表示为、,继而根据梯形的面积公式列式进行计算即可.【详解】(1)由已知,点在的图象上,∴,∴,∵点的横坐标为,∴点为,∵点与点关于原点对称,∴为,把,代入得,解得:,∴;(2)分别过点作轴于点,轴于点,连接,∵为中点,∴∵点在双曲线上,∴∴,设点的横坐标为,则点坐标表示为、,∴,解得.【点睛】本题考查了反比例函数与一次函数综合,涉及了待定系数法,反比例函数k的几何意义,熟练掌握和灵活运用相关知识是解题的关键.24、(1);(1)(0<x<11);(3)能,【解析】
(1)当△BEF是等边三角形时,求得∠ABE=30°,则可解Rt△ABE,求得BF即BE的长.(1)作EG⊥BF,垂足为点G,则四边形AEGB是矩形,在Rt△EGF中,由勾股定理知,EF1=(BF-BG)1+EG1.即y1=(y-x)1+111.故可求得y与x的关系.(3)当把△ABE沿着直线BE翻折,点A落在点A'处,应有∠BA'F=∠BA'E=∠A=90°,若△A'BF成为等腰三角形,必须使A'B=A'F=AB=11,有FA′=EF-A′E=y-x=11,继而结合(1)得到的y与x的关系式建立方程即可求得AE的值.【详解】(1)当△BEF是等边三角形时,∠EBF=90°,∵四边形ABCD是正方形,∴∠ABC=∠A=90°,∴∠ABE=∠ABC-∠EBC=90°-60°=30°,∴BE=1AE,设AE=x,则BE=1x,在Rt△ABE中,AB1+AE1=BE1,即111+x1=(1x)1,解得x=∴AE=,BE=,∴BF=BE=.(1)作EG⊥BF,垂足为点G,根据题意,得EG=AB=11,FG=y-x,EF=y,0<AE<11,在R
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年软件测试技术基础试题及答案
- 足浴店入职合同协议书
- 财务管理中的典型逻辑问题试题及答案
- 怎样写终止合同协议书
- 2025年VFP考试攻略试题及答案
- 合同买卖协议书怎么写
- C语言二级考试策略试题及答案
- 了解软件测试项目管理的关键要素及试题及答案
- 驿站转让合同协议书样本
- 物业合同无效赔偿协议书
- 2019泸州中考化学试题及答案
- 五人制足球规则(教学)
- 学校食堂“三同三公开”制度实施方案
- 2025年福建福州地铁集团有限公司招聘笔试参考题库含答案解析
- 人工智能在新闻媒体领域的应用
- 【MOOC】儒家伦理-南京大学 中国大学慕课MOOC答案
- 银保部三年规划
- 2024治安调解协议书样式
- 零工市场(驿站)运营管理 投标方案(技术方案)
- 小学二年级数学找规律练习题及答案
- 智研咨询重磅发布:2024年中国航运行业供需态势、市场现状及发展前景预测报告
评论
0/150
提交评论