版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省南阳市邓州市2024届八年级数学第二学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,学校有一块长方形草地,有极少数人为了避开拐角走“捷径”,在草地内走出了一条“路”,他们仅仅少走了()米路,却紧伤了花草。A.1 B.2 C.5 D.122.已知a是方程2x2﹣4x﹣2019=0的一个解,则a2﹣2a=()A.2019 B.4038 C. D.3.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.∠A=25°,∠B=65° B.∠A:∠B:∠C=2:3:5C.a:b:c=:: D.a=6,b=10,c=124.一次函数的图象经过原点,则k的值为A.2 B. C.2或 D.35.如图,矩形ABCD中,对角线AC=8cm,△AOB是等边三角形,则AD的长为()cm.A.4 B.6 C.4 D.36.下列分式中,最简分式是A. B. C. D.7.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D.8.下列各点中,在反比例函数图象上的点是A. B. C. D.9.如图,直线l1//l2//l3,直线AC分别交直线l1、l2、l3于点A、B、C,直线DF分別交直线l1,l2、l3于点A.ABBC=C.PAPB=10.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,) C.(,) D.(,4)二、填空题(每小题3分,共24分)11.如图,小丽在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网3米的位置上,已知她的击球高度是2.4米,则她应站在离网________米处.12.计算:__________.13.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是_____.14.把一个转盘平均分成三等份,依次标上数字1、2、3,自由转动转盘两次,把第一次转动停止后指针指向的数字记作x,把第二次转动停止后指针指向的数字记作y,则x与y的和为偶数的概率为______.15.计算的结果等于______________.16.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿A→B→C所走的路程是____m.(结果保留根号)17.如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若BC6,BD5,则点D的坐标是_____.18.当_____时,分式的值为1.三、解答题(共66分)19.(10分)计算:(1)(3.14﹣π)0+(﹣)﹣2﹣2×2﹣1(2)(2a2+ab﹣2b2)(﹣ab)20.(6分)2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产种购物袋个,每天共获利元.成本(元/个)售价(元/个)22.333.5(1)求出关于的函数解析式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?21.(6分)计算题(1)因式分解:1a2b﹣6ab2+1b1(2)解不等式组:(1)先化简,再求值:(1+)÷,其中a=﹣1.22.(8分)如图(1),一架云梯AB斜靠在一竖直的墙上,云梯的顶端A距地面15米,梯子的长度比梯子底端B离墙的距离大5米.(1)这个云梯的底端B离墙多远?(2)如图(2),如果梯子的顶端下滑了8m(AC的长),那么梯子的底部在水平方向右滑动了多少米?23.(8分)如图,在平面直角坐标系中,的直角边在轴上,.点的坐标为,点的坐标为,是边的中点,函数的图象经过点.(1)求的值;(2)将绕某个点旋转后得到(点,,的对应点分别为点,,),且在轴上,点在函数的图象上,求直线的表达式.24.(8分)已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数于点(2,a),求:(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形的面积.25.(10分)如图,在矩形中,对角线与相交于点,点,分别是,的中点,连结,.(1)求证:;(2)连结,若,,求矩形的周长.26.(10分)学海书店购一批故事书进行销售,其进价为每本40元,如果按每本故事书50元进行出售,每月可以售出500本故事书,后来经过市场调查发现,若每本故事书涨价1元,则故事书的销量每月减少20本.(1)若学海书店要保证每月销售此种故事书盈利6000元,同时又要使购书者得到实惠,则每本故事书需涨价多少元;(2)若使该故事书的月销量不低于300本,则每本故事书的售价应不高于多少元?
参考答案一、选择题(每小题3分,共30分)1、B【解析】
由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,进而得出答案.【详解】解:由题意可得,直角三角形的斜边为:32+42=5,
则他们仅仅少走了3+4-5=2(米).【点睛】此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.2、C【解析】
根据“a是方程2x2﹣4x﹣2019=0的一个解”得出,即,则答案可求.【详解】∵a是方程2x2﹣4x﹣2019=0的一个根,∴,∴,故选:C.【点睛】本题主要考查整体代入法和方程的根,掌握整体的思想和方程的根的概念是解题的关键.3、D【解析】
根据勾股定理的逆定理和三角形的内角和定理进行判定即可.【详解】解:A、∵∠A=25°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=90°,∴△ABC是直角三角形,故A选项正确;B、∵∠A:∠B:∠C=2:3:5,∴,∴△ABC是直角三角形;故B选项正确;C、∵a:b:c=::,∴设a=k,b=k,c=k,∴a2+b2=5k2=c2,∴△ABC是直角三角形;故C选项正确;D、∵62+102≠122,∴△ABC不是直角三角形,故D选项错误.故选:D.【点睛】本题主要考查直角三角形的判定方法,熟练掌握勾股定理的逆定理、三角形的内角和定理是解题的关键.4、A【解析】
把原点坐标代入解析式得到关于k的方程,然后解方程求出k,再利用一次函数的定义确定满足条件的k的值.【详解】把(0,0)代入y=(k+1)x+k1-4得k1-4=0,解得k=±1,而k+1≠0,所以k=1.故选A.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式,于是解决此类问题时把已知点的坐标代入解析式求解.注意一次项系数不为零.5、C【解析】
先求得∠ACB=30°,再求出AB=4cm,由勾股定理求得AD的长.【详解】∵△AOB是等边三角形,∴∠BAC=60°,∴∠ACB=30°,∵AC=8cm,∴AB=4cm,在Rt△ABC中,cm,∵AD=BC,∴AD的长为4cm.故选:C.【点睛】本题考查的是矩形的性质,关键是根据在直角三角形中,30°的锐角所对的直角边等于斜边的一半;以及勾股定理解答.6、C【解析】
最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】A、,不符合题意;B、,不符合题意;C、是最简分式,符合题意;D、,不符合题意;故选C.【点睛】本题考查了最简分式的定义及求法一个分式的分子与分母没有公因式时,叫最简分式分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题在解题中一定要引起注意.7、A【解析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选A.8、B【解析】
把各点的坐标代入解析式,若成立,就在函数图象上.即满足xy=2.【详解】只有选项B:-1×(-2)=2,所以,其他选项都不符合条件.故选B【点睛】本题考核知识点:反比例函数的意义.解题关键点:理解反比例函数的意义.9、C【解析】
根据平行线分线段成比例定理列出比例式,判断即可.【详解】解:∵l1∥l2∥l3,平行线分线段成比例,∴ABBC=DEPAPC=PDPAPB=PDPBPE=PCPF=故选择:C.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.10、C【解析】
利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(1,),∴AE=,OE=1.由等腰三角形底边上的三线合一得OB=1OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得,即,∴O′F=.在Rt△O′FB中,由勾股定理可求BF=,∴OF=.∴O′的坐标为().故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.二、填空题(每小题3分,共24分)11、6【解析】
由题意可得,△ABE∽△ACD,故,由此可求得AC的长,那么BC的长就可得出.【详解】解:如图所示:已知网高,击球高度,,由题意可得,∴∴,∴,∴她应站在离网6米处.故答案为:6.【点睛】本题考查了相似三角形的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.12、【解析】
先把每个二次根式化简,然后合并同类二次根式即可。【详解】解:原式=2-=【点睛】本题考查了二次根式的化简和运算,熟练掌握计算法则是关键。13、6<v<2或v=4.2【解析】
利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【详解】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,1)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=2x+1;将(0,1)、(70,420)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+1;将(0,1)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.2x+1.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<2或v=4.2.故答案为6<v<2或v=4.2【点睛】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.14、【解析】
画出树状图得出所有等可能结果与两数和为偶数的结果数,然后根据概率公式列式计算即可得解.【详解】解:根据题意,画出树状图如下:一共有9种等可能情况,其中x与y的和为偶数的有5种结果,∴x与y的和为偶数的概率为,故答案为:.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.15、【解析】
先用平方差公式,再根据二次根式的性质计算可得.【详解】解:原式==-=5-9=-4故答案为:-4【点睛】本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.16、【解析】
由图形可以看出AB=BC,要求AB的长,可以看到,AB、BC分别是直角边为1、2的两个直角三角形的斜边,运用勾股定理求出计算和即可.【详解】解:折线分为AB、BC两段,
AB、BC分别看作直角三角形斜边,
由勾股定理得AB=BC==米.
小明沿图中所示的折线从A⇒B⇒C所走的路程为+=2米故答案为:2米.【点睛】本题考查了勾股定理的简单应用,在图形中正确找到直角三角形是解题关键.17、10,3.【解析】
过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,可得出△BCD是等腰三角形,即可得到CG=12BC,再根据勾股定理求出【详解】过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD,∴△BCD是等腰三角形,∴点G是BC的中点,∴CG=1∴GD=C∵四边形ABCD是正方形,∴AB=BC=6,6+4=10,∴D10,3故答案为:10,3.【点睛】本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出△BCD是等腰三角形是解题的关键.18、.【解析】
分式值为零的条件:分子为零且分母不为零,即且.【详解】分式的值为1且解得:故答案为.【点睛】从以下三个方面透彻理解分式的概念:分式无意义分母为零;分式有意义分母不为零;分式值为零分子为零且分母不为零.三、解答题(共66分)19、(1)2;(2)−a1b−a2b2+ab1.【解析】
(1)根据0次幂和负整数指数幂,即可解答.(2)根据单项式乘以多项式,即可解答.【详解】(1)(1.12﹣π)0+(﹣)﹣2﹣2×2﹣1=1+2-2×=1+2-1=2.(2)(2a2+ab-2b2)(-ab)=−a1b−a2b2+ab1.【点睛】本题考查了单项式乘以多项式,解决本题的关键是熟记单项式乘以多项式的法则.20、(1);(2)1.【解析】解:(1)y=0.3x+0.5(4500-x)=-0.2x+2250(2)2x+3(4500-x)≤10000X≥3500因为y是x的一次函数,k=-0.2<0,y随x的增大而减小,当x=3500时y的值最小为1元。根据题意,利用(总获利=A个数×A单位获利+B个数×B单位获利),得到函数解析式,再根据(2)的题意可得到一个不等式,解不等式求出x的范围,再结合(1)中的函数式可得出x的具体数值.21、(2)2b(a﹣b)2;(2)﹣2<x≤2;(2)a+2;﹣2.【解析】
(2)先提公因式,再运用平方差公式;(2)分别解不等式,再确定解集;(2)根据分式的性质化简,再代入值计算.【详解】解:(2)2a2b﹣6ab2+2b2=2b(a2﹣2ab+b2)=2b(a﹣b)2;(2)∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2;(2)(2+)÷,=a+2,当a=﹣2时,原式=﹣2+2=﹣2.【点睛】本题考查解不等式组,因式分解,分式的化简求值,熟练掌握相关知识是解题关键.22、(1)这个云梯的底端B离墙20米;(2)梯子的底部在水平方向右滑动了4米.【解析】
(1)由题意得OA=15米,AB-OB=5米,根据勾股定理OA2+OB2=AB2,可求出梯子底端离墙有多远;
(2)由题意得此时CO=7米,CD=AB=25米,由勾股定理可得出此时的OD,继而能和(1)的OB进行比较.【详解】解:(1)设梯子的长度为x米,则云梯底端B离墙为x-5米。15x=25∴这个云梯的底端B离墙20米。(2)∵CO=AO-AC=15-8=7∴OD∴OD=24∴BD=OD-OB=24-20=4∴梯子的底部在水平方向右滑动了4米。【点睛】此题主要考查了勾股定理得应用,关键是正确理解题意,掌握直角三角形两直角边的平方和等于斜边的平方.23、(1)5;(4)y=4x-1.【解析】
(1)根据直角三角形的性质和坐标与图形的特点求得点的坐标,将其代入反比例函数解析式求得的值;(4)根据旋转的性质推知:,故其对应边、角相等:,,,由函数图象上点的坐标特征得到:,.结合得到,利用待定系数法求得结果.【详解】(1)∵Rt△ABC的直角边AB在x轴上,∠ABC=90°,点C的坐标为(5,4),∴点B的坐标为(5,0),CB=4.∵M是BC边的中点,∴点M的坐标为(5,4).∵函数的图像进过点M,∴k=5×4=5.(4)∵△ABC绕某个点旋转180°后得到△DEF,∴△DEF≌△ABC.∴DE=AB,EF=BC,∠DEF=∠ABC=90°.∵点A的坐标为(1,0),点B的坐标为(5,0),∴AB=4.∴DE=4.∵EF在y轴上,∴点D的横坐标为4.∵点D在函数的图象上,当x=4时,y=5.∴点D的坐标为(4,5).∴点E的坐标为(0,5).∵EF=BC=4,∴点F的坐标为(0,-1).设直线DF的表达式为y=ax+b,将点D,F的坐标代入,得解得.∴直线DF的表达式为y=4x-1.【点睛】本题考查了待定系数法求一次函数解析式,反比例函数图象上点的坐标特征,旋转的性质.解题时,注意函数思想和数形结合数学思想的应用.24、(1)a=1;(2)k=2,b=-3;(3).【解析】
(1)由题知,点(2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 线描课件教学
- 《吸入麻醉药王国贤》课件
- 手机卖场岗前培训
- 《科技异化》课件
- 《种尊重的教学》课件
- 小学科学课件6年级
- 胸腔镜手术手术配合
- 《妇产科学》课件-13.4卵巢肿瘤
- 糖尿病高渗高血糖综合征
- 《保洁管理的涵义》课件
- N5语法练习加详解(共26页)
- 《书愤》PPT课件
- 室内装饰装修工程施工组织设计方案(完整版)
- (最新)陕西省建筑工程施工质量验收技术资料管理整编规定及指
- 乌兹别克斯坦新增进口商品消费税税率表
- 基于人才战略的企业年金在民办高校中的应用研究
- 消防维保年度总结范文(2篇)精选范文
- 天津科技大学 大学物理(下)本科试卷(A卷)(含答案)
- 消防应急组织架构图
- 锅炉安装工程—质量证明书(散装)
- 铁矿矿山环境保护与综合治理方案
评论
0/150
提交评论