版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年重庆实验中学校高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数在区间上不是单调函数,则的范围为
(
)A.
B.
C.
D.参考答案:D略2.已知数列1,,,,3,…,则是这个数列的第()项.A.10 B.11 C.12 D.21参考答案:B【考点】数列的概念及简单表示法.【分析】可根据数列前几项找规律,求出数列的通项公式,再让数列的第n项等于,即可求出.【解答】解:根据数列前几项,可判断数列的通项公式为an=,假设为数列的第n项,则,解得,n=11故选B3.《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日、第五日、第八日所织之和为十五尺,问第十日所织尺数为()A.6 B.9 C.12 D.15参考答案:D【考点】等差数列的前n项和.【分析】设此数列为{an},由题意可知为等差数列,公差为d.利用等差数列的前n项和公式和通项公式列出方程组,求出首项和公差,由此能求出结果.【解答】解:设此数列为{an},由题意可知为等差数列,公差为d.则S7=21,a2+a5+a8=15,则7a1+d=21,3a1+12d=15,解得a1=﹣3,d=2.∴a10=﹣3+9×2=15.故选:D.4.已知a、b是正实数,则下列不等式中不成立的是
(
)
A.
B.
C.
D.参考答案:D略5.已知椭圆的右焦点为F.短轴的一个端点为M,直线交椭圆E于A,B两点.若,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A. B. C. D.参考答案:A试题分析:设是椭圆的左焦点,由于直线过原点,因此两点关于原点对称,从而是平行四边形,所以,即,,设,则,所以,,即,又,所以,.故选A.考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得关系或范围,解题的关键是利用对称性得出就是,从而得,于是只有由点到直线的距离得出的范围,就得出的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.6.等比数列的前n项和,前2n项和,前3n项的和分别为A,B,C,则()A.A+B=C B.B2=AC C.(A+B)﹣C=B2 D.A2+B2=A(B+C)参考答案:D【考点】等比数列的性质.【专题】计算题.【分析】利用等比数列的性质可得,所以,进行整理可得答案.【解答】解:由题意可得:Sn=A,S2n=B,S3n=C.由等比数列的性质可得:,,所以,所以整理可得:A2+B2=A(B+C).故选D.【点评】解决此类问题的关键是熟练掌握等比数列的有关性质,并且进行正确的运算,一般以选择题的形式出现.7.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:sin15°=0.2588,sin7.5°=0.1305)A.12 B.24 C.48 D.96参考答案:B【分析】列出循环过程中S与n的数值,满足判断框的条件,即可结束循环,得到答案.【详解】模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.【点睛】本题主要考查了循环框图的应用,其中解答中根据给定的程序框图,逐次循环,注意判断框的条件的应用是解答的关键,着重考查了运算与求解能力,属于基础题。8.函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为()A. B. C. D.参考答案:D【考点】函数的图象.【分析】先根据函数的奇偶性排除AB,再取x=π,得到f(π)<0,排除C.【解答】解:f(﹣x)=(﹣x+)cos(﹣x)=﹣(x﹣)cosx=﹣f(x),∴函数f(x)为奇函数,∴函数f(x)的图象关于原点对称,故排除A,B,当x=π时,f(π)=(π﹣)cosπ=﹣π<0,故排除C,故选:D.9.把∠A=60°,边长为8的菱形ABCD沿对角线BD折成60°的二面角,则AC与BD的距离为
(
)
(A)6
(B)
(C)
(D)
参考答案:A略10.圆半径是1,圆心的极坐标是,则这个圆的极坐标方程是(
)
A.
B.
C.
D.参考答案:C极坐标方程化为直角坐标方程可得圆心坐标为:,则圆的标准方程为:,即,化为极坐标方程即:,整理可得:.
二、填空题:本大题共7小题,每小题4分,共28分11.已知命题.则是__________;参考答案:12.已知、为互相垂直的单位向量,非零向量,若向量与向量、的夹角分别为、,则
参考答案:1
13.已知函数在(-∞,+∞)上单调递增,则a的取值范围是________.参考答案:函数在上单调递增,又函数的对称轴;解得;
14.椭圆的两个焦点为,B是短轴的顶点,则=
.参考答案:15.若复数其中是虚数单位,则复数的实部为
.参考答案:略16.已知抛物线点的坐标为(12,8),N点在抛物线C上,且满足O为坐标原点.则抛物线C的方程____________。参考答案:略17.已知方程是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm,的单位是kg,那么针对某个体(160,53)的随机误差是
.参考答案:-0.29三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(Ⅰ)求的值;(Ⅱ)求函数的单调区间.
参考答案:略19.已知函数f(x)=alnx+x2(a为常数).(1)若a=﹣2,求函数f(x)的单调区间;(2)若当x∈[1,e]时,f(x)≤(a+2)x恒成立,求实数a的取值范围.参考答案:略20.已知函数:,.
⑴解不等式;⑵若对任意的,,求的取值范围.参考答案:解:⑴可化为,,
①当时,即时,不等式的解为R;②当时,即或时,,,不等式的解为或;⑵(理科),对任意的恒成立,①当时,,即在时恒成立;因为,当时等号成立.所以,即;ks5u
②当时,,即在时恒成立,因为,当时等号成立.ks5u
所以,即;③当时,.综上所述,实数的取值范围是略21.已知函数f(x)=|x﹣a|+|2x﹣1|(a∈R).(Ⅰ)当a=1时,求f(x)≤2的解集;(Ⅱ)若f(x)≤|2x+1|的解集包含集合[,1],求实数a的取值范围.参考答案:【考点】R5:绝对值不等式的解法.【分析】(I)运用分段函数求得f(x)的解析式,由f(x)≤2,即有或或,解不等式即可得到所求解集;(Ⅱ)由题意可得当时,不等式f(x)≤|2x+1|恒成立.即有(x﹣2)max≤a≤(x+2)min.求得不等式两边的最值,即可得到a的范围.【解答】解:(I)当a=1时,f(x)=|x﹣1|+|2x﹣1|,f(x)≤2?|x﹣1|+|2x﹣1|≤2,上述不等式可化为或或解得或或…∴或或,∴原不等式的解集为.…(II)∵f(x)≤|2x+1|的解集包含,∴当时,不等式f(x)≤|2x+1|恒成立,…即|x﹣a|+|2x﹣1|≤|2x+1|在上恒成立,∴|x﹣a|+2x﹣1≤2x+1,即|x﹣a|≤2,∴﹣2≤x﹣a≤2,∴x﹣2≤a≤x+2在上恒成立,…∴(x﹣2)max≤a≤(x+2)min,∴,所以实数a的取值范围是.22.已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数a的取值范围.参考答案:(1).(2)【分析】(1)利用零点分类讨论法解绝对值不等式;(2)由题得对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《TSHR内含子1区段与4p14区段单核苷酸多态性及基因交互作用与Graves病相关性研究》
- 温州市鹿城区卫健系统选聘医学类笔试真题2023
- 兵团乌鲁木齐区域医联体招聘笔试真题2023
- 2023年镇宁自治县中医院(医共体)扁担山镇分院招聘笔试真题
- 2024年度石油开采技术服务合同标的
- 2024年度大数据分析及应用承揽合同
- 二零二四年城市地下空间开发爆破技术合同
- 2024版租赁物维修保养合同标的及服务范围
- 2024年度卫星通信服务合同:运营商与用户之间的通信服务与费用规定
- 二手手机交易合同2024:卖方义务与买方权利的平衡
- 第五单元达标检测卷-2024-2025学年语文六年级上册统编版
- 综合实践项目 制作细胞模型 教学设计-2024-2025学年人教版生物七年级上册
- 7 健康看电视第二课时(教学设计)-2023-2024学年道德与法治四年级上册(部编版)
- 2024至2030年全球与中国NFT艺术交易平台市场现状及未来发展趋势
- 中班科学课件《动物的超级本领》
- 干部履历表填写范本(中共中央组织部1999年)
- 古诗三首《江南春》+公开课一等奖创新教案+教学阐释+素材
- 统编版道德与法治二年级上册全册课件
- 河南省洛阳市2022-2023学年九年级上学期期末数学试题
- 新苏教版四年级上册科学全册知识点
- 养生馆转让合同协议书
评论
0/150
提交评论