版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年广东云浮市云安区八年级下册数学期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若A(x1,y1)、B(x2,y2)是一次函数y=ax+x-2图像上的不同的两点,记,则当m<0时,a的取值范围是()A.a<0 B.a>0 C.a<-1 D.a>-12.如图,平行四边形ABCD中,BD⊥AD,∠A=30°,BD=4,则CD的长为()A.2 B.4 C.4 D.83.如图,菱形ABCD中,E.F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.244.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中①小明家与学校的距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.其中正确的个数是()A.1个 B.2个C.3个 D.4个5.用反证法证明“四边形中至少有一个角是钝角或直角”,则应先假设()A.至少有一个角是锐角 B.最多有一个角是钝角或直角C.所有角都是锐角 D.最多有四个角是锐角6.如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2)7.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.38.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是()A.4 B.6 C.8 D.109.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.4 B.3 C.2 D.110.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:步数(万步)1.01.21.11.41.3天数335712在每天所走的步数这组数据中,众数和中位数分别是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.411.对于方程:,下列判断正确的是()A.只有一个实数根 B.有两个不同的实数根C.有两个相同的实数根 D.没有实数根12.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.25二、填空题(每题4分,共24分)13.直线y=﹣2x﹣1向上平移3个单位,再向左平移2个单位,得到的直线是_____.14.在英文单词believe中,字母“e”出现的频率是_______.15.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.16.将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据_____.17.高6cm的旗杆在水平面上的影长为8cm,此时测得一建筑物的影长为28cm,则该建筑物的高为______.18.已知,化简:__________.三、解答题(共78分)19.(8分)已知平行四边形ABCD的两边AB、BC的长是关于x的方程x2-mx+m2-14(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么平行四边形ABCD的周长是多少?20.(8分)解不等式组,并将其解集在数轴上表示出来.(1);(2)21.(8分)如图1,点O为正方形ABCD的中心,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.(1)求∠EOF的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=OF,求的值.22.(10分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?23.(10分)已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形.(1)求证:四边形ADCE是平行四边形;(2)在△ABC中,若AC=BC,则四边形ADCE是;(只写结论,不需证明)(3)在(2)的条件下,当AC⊥BC时,求证:四边形ADCE是正方形.24.(10分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?25.(12分)全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A食品安全80B教育医疗mC就业养老nD生态环保120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?26.给出三个多项式:,请选择两个多项式进行加法运算,并把结果分解因式(写出两种情况).
参考答案一、选择题(每题4分,共48分)1、C【解析】
∵A(x1,y1)、B(x2,y2)是一次函数图象上的不同的两点,,
∴该函数图象是y随x的增大而减小,
∴a+1<0,
解得a<-1,
故选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.2、D【解析】
根据30°所对的直角边是斜边的一半即可求出AB,然后利用平行四边形的性质即可求出结论.【详解】解:∵BD⊥AD,∴△ABD为直角三角形,在Rt△ABD中,BD=4,∠A=30°,∴AB=2BD=8,∵四边形ABCD为平行四边形,∴CD=AB=8,故选:D.【点睛】此题考查的是直角三角形的性质和平行四边形的性质,掌握30°所对的直角边是斜边的一半和平行四边形的对边相等是解决此题的关键.3、D【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.【详解】、分别是、的中点,是的中位线,,菱形的周长.故选:.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.4、D【解析】
根据函数图象中各拐点的实际意义求解可得.【详解】①.根据图形可知小明家与学校的距离1200米,此选项正确;②.小华到学校的平均速度是1200÷(13−8)=240(米/分),此选项正确;③.(480÷240)+8=10分,所以小华乘坐公共汽车后7:50与小明相遇,此选项正确;④.小华跑步的平均速度是1200÷(20−8)=100(米/分)他们可以同时到达学校,此选项正确;故选:D.【点睛】此题考查函数图象,看懂图中数据是解题关键根据.5、C【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:所有角都是锐角.故选C.【点睛】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.6、A【解析】
依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=-1,可得G(-1,2).【详解】如图,过点A作AH⊥x轴于H,AG与y轴交于点M,∵▱AOBC的顶点O(0,0),A(-1,2),∴AH=2,HO=1,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴MG=-1,∴G(-1,2),故选A.【点睛】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.7、D【解析】
试题分析:已知,在△ABC中,∠ACB=90°,AC=8,AB=10,根据勾股定理可得BC=6,又因DE垂直平分AC,∠ACB=90°,可得DE为△ABC的中位线,根据三角形的中位线定理可得DE=BC=3,故答案选D.考点:勾股定理;三角形的中位线定理.8、C【解析】∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=1.故选C.9、B【解析】
可设2米的彩绳有x条,1米的彩绳有y条,根据题意可列出关于x,y的二元一次方程,为了不造成浪费,取x,y的非负整数解即可.【详解】解:设2米的彩绳有x条,1米的彩绳有y条,根据题意得2x+y=5,其非负整数解为:x=0y=5,故选:B【点睛】本题考查了二元一次方程的应用,二元一次方程的解有无数个,但在实际问题中应选择符合题意的解.正确理解题意是解题的关键.10、B【解析】
在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.【详解】在这组数据中出现次数最多的是1.1,即众数是1.1.要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.故选B.【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.11、B【解析】
原方程变形后求出△=b2-4ac的值,然后根据计算结果判断方程根的情况.【详解】∵x(x+1)=0,∴x2+x=0,∵a=1,b=1,c=0,∴△=b2-4ac=1-0=1>0∴方程有两个不相等的实数根.故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.12、A【解析】
解:利用勾股定理可得:,故选A.二、填空题(每题4分,共24分)13、y=﹣2x﹣2【解析】
根据“左加右减,上加下减”的平移规律即可求解.【详解】解:直线先向上平移3个单位,再向左平移2个单位得到直线,即.故答案为.【点睛】本题考查图形的平移变换和函数解析式之间的关系.掌握平移规律“左加右减,上加下减”是解题的关键.14、【解析】
先求出英文单词believe总的字母个数和e的个数,再根据握频率=进行计算即可.【详解】∵英文单词believe共有7个字母,其中有3个e,∴字母“e”出现的频率是;故答案为:.【点睛】此题考查频数与频率,解题关键在于掌握频率的计算公式即可.15、或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=,此时min{2,-x+3,5x}=min{2,,}=2,成立;②2x+1=-x+3,x=,此时min{2,-x+3,5x}=min{2,,}=2,不成立;③2x+1=5x,x=,此时min{2,-x+3,5x}=min{2,,}=,成立,∴x=或,故答案为或.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.16、两组对边分別平行的四边形是平行四边形【解析】
根据平行四边形的判定方法即可求解.【详解】解:∵两块相同的含有30°角的三角尺∴AD=BC,AB=CD,∠ADB=∠DBC=90°,∠ABD=∠BDC=30°∴AB∥CD,AD∥BC∴四边形ABCD是平行四边形依据为:两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)故答案为两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)【点睛】此题主要考查平行四边形的的判定,解题的关键是熟知平行四边形的判定定理.17、21【解析】【分析】设建筑物高为hm,依题意得.【详解】设建筑物高为hm,依题意得解得,h=21故答案为21【点睛】本题考核知识点:成比例性质.解题关键点:理解同一时刻,物高和影长成比例.18、1【解析】
直接利用二次根式的性质化简得出答案.【详解】解:∵0<a<1,∴,故答案为:1.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.三、解答题(共78分)19、(1)m=1时,四边形ABCD是菱形,菱形ABCD的边长是12【解析】试题分析:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(m2﹣1整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+14解得:x1=x2=0.1,故当m=1时,四边形ABCD是菱形,菱形的边长是0.1;(2)把AB=2代入原方程得,m=2.1,把m=2.1代入原方程得x2﹣2.1x+1=0,解得x1=2,x2=0.1,∴C▱ABCD=2×(2+0.1)=1.考点:一元二次方程的应用;平行四边形的性质;菱形的性质.20、(1),答案见解析;(2)不等式组无解,答案见解析.【解析】
(1)不等式去分母,去括号,移项合并,把x系数化为1,即可求出解;
(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)去分母得:,
解得:,
;
(2)
由①得:x>2,
由②得:x<−1,
则不等式组无解.【点睛】本题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.21、(1)45°;(2)证明见解析;(3)【解析】
(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.∴△OBE≌△OCG(SAS).∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.∴∠EOG=90°,∵△BEF的周长等于BC的长,∴EF=GF.∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.(2).连接OA.∵点O为正方形ABCD的中心,∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3).∵△AOE∽△CFO,∴==.即AE=×CO,CF=AO÷.∵OE=OF,∴=.∴AE=CO,CF=AO.∴=.点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.22、(1)y=﹣96x+192(0≤x≤2);(2)下午4时.【解析】试题分析:(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.试题解析:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有:,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),(192﹣112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.考点:一次函数的应用.23、(1)证明见解析;(2)矩形;(3)证明见解析.【解析】
(1)证明是平行四边形的方法有很多,此题用一组对边平行且相等较为简单.(2)根据矩形的判定解答即可.(3)根据正方形的判定解答即可.【详解】证明:(1)∵四边形BCED是平行四边形,∴BD∥CE,BD=CE;∵D是AB的中点,∴AD=BD,∴AD=CE;又∵BD∥CE,∴四边形ADCE是平行四边形.(2)在△ABC中,若AC=BC,则四边形ADCE是矩形,故答案为矩形;(3)∵AC⊥BC,∴∠ACB=90°;∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/TS 7815-1:2025 EN Intelligent transport systems - Telematics applications for regulated commercial freight vehicles (TARV) using ITS stations - Part 1: Secure vehicle in
- 精馏塔苯甲苯课程设计
- 统计信源熵课程设计
- 移动通信秒表课程设计
- 泵与泵站课程设计概要
- 2024招聘考试高频考点题库试题含答案
- 线描狗狗创意课程设计
- 山地自行车行业销售工作总结
- 自然教育课程设计大赛
- 学校班主任的食品安全教育策略计划
- 南京工业大学《建筑结构与选型》2021-2022学年第一学期期末试卷
- 派出所考勤制度管理制度
- 网络评论员培训
- 2024年西藏中考语文真题
- 某大厦10kv配电室增容改造工程施工方案
- 中建“大商务”管理实施方案
- 2024年航空职业技能鉴定考试-航空乘务员危险品考试近5年真题集锦(频考类试题)带答案
- 表 6-1-12 咽喉部检查法评分标准
- 2024-2025学年四年级科学上册第一单元《声音》测试卷(教科版)
- 2024年湖南省长沙市中考数学试题(含解析)
- 2024年大学华西医院运营管理部招考聘用3人高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论