版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省安庆市太湖县2024年数学八年级下册期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是()A.4+3 B.2 C.2+6 D.42.以下列各组数为边长,能构成直角三角形的是()A.2,3,4 B.3,4,6 C.6,8,11 D.7,24,253.不等式组的解集在数轴上表示正确的是()A. B.C. D.4.如图,的周长为,对角线、相交于点,点是的中点,,则的周长为()A. B. C. D.5.20190的值等于()A.-2019 B.0 C.1 D.20196.正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.-2 C.4 D.-47.如图,在中,点在边上,AE交于点,若DE=2CE,则()A. B. C. D.8.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A. B.C. D.9.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成()A.10组 B.9组 C.8组 D.7组10.直角三角形的两条直角边分别是6,8,则此直角三角形三条中线的和是()A. B.C. D.二、填空题(每小题3分,共24分)11.已知分式方程+=,设,那么原方程可以变形为__________12.如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A3,0,与y轴交于点B0,1,则不等式kx+b>1的解集为13.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为_____,面积为_____.14.如图,将矩形纸片折叠,使点与点重合,其中,则的长度为__________.15.如图,点P是平面坐标系中一点,则点P到原点的距离是_____.16.直线与两坐标轴围成的三角形的面积为4,则的值为______.17.若不等式(m-2)x>1的解集是x<,则m的取值范围是______.18.如图,已知直线、相交于点,平分,如果,那么__________度.三、解答题(共66分)19.(10分)已知一次函数y=2x和y=-x+4.(1)在平面直角坐标中作出这两函数的函数图像(不需要列表);(2)直线垂直于轴,垂足为点P(3,0).若这两个函数图像与直线分别交于点A,B.求AB的长.20.(6分)定义:有三个角相等的四边形叫做三等角四边形.(1)在三等角四边形中,,则的取值范围为________.(2)如图①,折叠平行四边形,使得顶点、分别落在边、上的点、处,折痕为、.求证:四边形为三等角四边形;(3)如图②,三等角四边形中,,若,,,则的长度为多少?21.(6分)在平行四边形ABCD中,对角线AC、BD交于点O,点E、F在AC上,且AE=CF,求证:DE=BF.22.(8分)如图,平行四边形中,对角线和相交于点,且(1)求证:;(2)若,求的长.23.(8分)如图,一架5米长的梯子AB斜靠在一面墙上,梯子底端B到墙底的垂直距离BC为3米.(1)求这个梯子的顶端A到地面的距离AC的值;(2)如果梯子的顶端A沿墙AC竖直下滑1米到点D处,求梯子的底端B在水平方向滑动了多少米?24.(8分)分解因式:(1)2xy-x2-y2;(2)2ax3-8ax.25.(10分)已知关于的方程.(1)求证:无论取何值时,方程总有实数根;(2)给取一个适当的值,使方程的两个根相等,并求出此时的两个根.26.(10分)选择合适的方法解一元二次方程:
参考答案一、选择题(每小题3分,共30分)1、B【解析】
将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【详解】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB==,∴∠ACB=30°,AC=2AB=,∵∠BCE=60°,∴∠ACE=90°,∴AE==.故选B.【点睛】本题考查轴对称—最短问题、矩形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.2、D【解析】
将两短边的平方相加,与最长边的平方进行比较,由此即可得出结论.【详解】解:A、∵22+32=13,42=16,13≠16,∴以2、3、4为边长的三角形不是直角三角形;B、∵32+42=25,62=36,25≠36,∴以3、4、6为边长的三角形不是直角三角形;C、∵62+82=100,112=121,100≠121,∴以6、8、11为边长的三角形不是直角三角形;D、∵72+242=625,252=625,625=625,∴以7、24、24为边长的三角形是直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.3、B【解析】
先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【详解】∵解不等式得:x<0,解不等式得:x≤3,∴不等式组的解集为x<0,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,解题的关键是先解不等式再画数轴.4、A【解析】
利用平行四边形的性质,三角形中位线定理即可解决问题【详解】解:平行四边形的周长为18,,,,∴,,,的周长为,故选.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.5、C【解析】
根据任何非0数的0次幂都等于1即可得出结论.【详解】解:20190=1.故选:C.【点睛】此题考查的是零指数幂的性质,掌握任何非0数的0次幂都等于1是解决此题的关键.6、B【解析】
直接根据正比例函数的性质和待定系数法求解即可.【详解】把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=-2,故选B.【点睛】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.7、D【解析】
根据DE=2CE可得出DE=CD,再由平行四边形的性质得出CD=AB,从而由即可得出答案.【详解】解:∵DE=2CE,
∴DE=CD,
又∵,AB=CD,
∴.
故选:D.【点睛】本题考查平行四边形的性质及平行线分线段成比例的知识,解答本题的关键是根据DE=2CE得出的比值,难度一般.8、D【解析】
利用函数图象,找出直线y=x+m在直线y=kx-1的下方所对应的自变量的范围即可【详解】解析根据图象得,当x<-1时,x+m<kx-1故选D【点睛】此题考查在数轴上表示不等式的解集和一次函数与ー元一次不等式,解题关键在于判定函数图象的位置关系9、A【解析】
在这组数据中最大值为143,最小值为50,它们的差为143-50=93,已知组距为10,可知93÷10=9.3,故可以分成10组.故选A.【点睛】此题主要考查了频数直方图的组距,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.10、C【解析】
利用勾股定理,根据中线的定义计算即可.【详解】解:∵直角三角形的两条直角边分别是6,8,∴斜边=10,∴此直角三角形三条中线的和=,故选:C.【点睛】此题考查了勾股定理的运用以及中线的定义,比较基础,注意数据的计算.二、填空题(每小题3分,共24分)11、=【解析】【分析】运用整体换元法可得到结果.【详解】设,则分式方程+=,可以变形为=故答案为:=【点睛】本题考核知识点:分式方程.解题关键点:掌握整体换元方法.12、x<0【解析】
根据直线y=kx+b与y轴交于点B(1,1),以及函数的增减性,即可求出不等式kx+b>1的解集.【详解】解:∵直线y=kx+b与x轴交于点A(3,1),与y轴交于点B(1,1),∴y随x的增大而减小,∴不等式kx+b>1的解集是x<1.故答案为x<1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标13、39cm60cm1【解析】
根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=AD=CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【详解】∵BE、CE分别平分∠ABC、∠BCD,∴∠1=∠3=∠ABC,∠DCE=∠BCE=∠BCD,在▱ABCD中,AB=CD,AD=BC,AD∥BC,AB∥CD,∵AD∥BC,AB∥CD,∴∠1=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠1,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在Rt△BCE中,根据勾股定理得:BC=13cm,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;作EF⊥BC于F,根据直角三角形的面积公式得:EF=cm,∴平行四边形ABCD的面积=BC·EF==60cm1,故答案为39cm,60cm1.【点睛】本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理等,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.14、5【解析】
由折叠的AE=EC,设AE=x,则EB=8-x,利用勾股定理求解即可.【详解】由折叠的AE=EC,设AE=x,则EB=8-x∵矩形ABCD∴∠B=90°∴42+(8-x)2=x2∴x=5故AE=5.【点睛】本题考查的是折叠,熟练掌握勾股定理是解题的关键.15、1【解析】
连接PO,在直角坐标系中,根据点P的坐标是(),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.【详解】连接PO,∵点P的坐标是(),
∴点P到原点的距离==1.故答案为:1【点睛】此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.16、【解析】
直线y=-2x+b与x轴的交点为(
,0),与y轴的交点是(0,b),由题意得,,求解即可.【详解】∵直线y=-2x+b与x轴的交点为(
,0),与y轴的交点是(0,b),直线y=-2x+b与两坐标轴围成的三角形的面积是1,∴,解得:b=±1.故答案为:.【点睛】本题考查了一次函数图象上点的坐标特征.本题需注意在计算平面直角坐标系中的三角形面积时,用不确定的未知字母来表示线段长时,应该使用该字母的绝对值表示.17、m<1【解析】
根据不等式的性质和解集得出m-1<0,求出即可.【详解】∵不等式(m-1)x>1的解集是x<,
∴m-1<0,
即m<1.
故答案是:m<1.【点睛】考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质和解集得出m-1<0是解此题的关键.18、1【解析】
先根据角平分线的定义,求出∠BOC的度数,再根据邻补角的和等于11°求解即可.【详解】解:∵平分,,∴,∴,故答案为:1.【点睛】本题考查了角平分线的定义以及邻补角的性质,属于基础题.三、解答题(共66分)19、(1)见解析(2)5【解析】
(1)根据网格即可作出函数图像;(2)根据图像即可得到AB的长.【详解】(1)如图所示;(2)由图像可得AB=5.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的画法.20、(1);(2)见解析;(3)的长度为.【解析】
(1)根据四边形的内角和是360°,确定出∠BAD的范围;(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC即可;(3)延长BA,过D点作DG⊥BA,继续延长BA,使得AG=EG,连接DE;延长BC,过D点作DH⊥BC,继续延长BC,使得CH=HF,连接DF,由SAS证明△DEG≌△DAG,得出AD=DE=,∠DAG=∠DEA,由SAS证明△DFH≌△DCH,得出CD=DF=6,∠DCH=∠DFH,证出DE∥BF,BE∥DF,得出四边形DEBF是平行四边形,得出DF=BE=6,DE=BF=,由等腰三角形的性质得出EG=AG=(BE-AB)=1,在Rt△DGA中,由勾股定理求出DG==4,由平行四边形DEBF的面积求出,在Rt△DCH中,由勾股定理求出,即可得出BC的长度.【详解】(1)∵∴∴∵∴∴故答案为:(2)证明:∵四边形为平行四边形,∴,∴∵,∴∵,,∴∴四边形是三等角四边形;(3)延长,过点作,继续延长,使得,连接;延长,过点作,继续延长,使得,连接,如图所示:在和中,∴,∴,同理可得,∴,∵∴,∴,∴四边形是平行四边形,∴,,∴在中,∵平行四边形的面积,即:∴在中,∴故答案为:的长度为.【点睛】本题是四边形综合题目,考查了三等角四边形的判定与性质,翻折变换-折叠问题,四边形的内角和定理,平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形全等和运用勾股定理是解决问题的关键.21、证明见解析.【解析】
首先连接BE,DF,由四边形ABCD是平行四边形,AE=CF,易得OB=OD,OE=OF,即可判定四边形BEDF是平行四边形,继而证得DE=BF.【详解】连接BE,DF,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,∴OE=OF,∴四边形BEDF是平行四边形,∴DE=BF.考点:1.平行四边形的性质;2.全等三角形的判定与性质.22、(1)详见解析;(2)【解析】
(1)先证明AC=BD,再证明平行四边形ABCD是矩形即可得到答案;(2)证明△AOD为等边三角形,再运用勾股定理求解即可.【详解】证明:在平行四边形中,,又,四边形是矩形解:四边形是矩形.,又是等边三角形,,在中,【点睛】本题考查了矩形的判定和性质,勾股定理,平行四边形的性质,熟练掌握矩形的判定和性质定理是解题的关键.23、(1)4(2)1【解析】
(1)在直角三角形ABC中,利用勾股定理即可求出AC的长;(2)首先求出CD的长,利用勾股定理可求出CE的长,进而得到BE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度海参产业链供应链金融解决方案合同3篇
- 2025年钢厂炉渣热能回收利用合同范本2篇
- 2025版五星级酒店餐饮部员工劳务合作协议3篇
- 二零二五年度畜牧饲养技术培训与推广合作协议3篇
- 2025年度电子商务平台个人劳务用工合同模板
- 二零二五年度车辆租赁与租赁期限调整服务合同3篇
- 二零二五年度橙子产业投资与融资合作协议3篇
- 二零二五年度厨具行业绿色供应链合作框架协议3篇
- 2025年度网络安全防护解决方案采购合同范本5篇
- 2025年度个人购房税费缴纳协议书2篇
- 家长心理健康教育知识讲座
- 煤矿复工复产培训课件
- GB/T 292-2023滚动轴承角接触球轴承外形尺寸
- 2024年九省联考高考数学卷试题真题答案详解(精校打印)
- 军人结婚函调报告表
- 民用无人驾驶航空器实名制登记管理规定
- 北京地铁6号线
- 航空油料计量统计员(初级)理论考试复习题库大全-上(单选题汇总)
- 谅解书(标准样本)
- 西班牙语构词.前后缀
- 《工程测试技术》全套教学课件
评论
0/150
提交评论