山东省青岛市即墨市七级中学2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第1页
山东省青岛市即墨市七级中学2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第2页
山东省青岛市即墨市七级中学2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第3页
山东省青岛市即墨市七级中学2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第4页
山东省青岛市即墨市七级中学2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛市即墨市七级中学2024年八年级数学第二学期期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数 B.中位数 C.众数 D.方差2.正比例函数y=(k+2)x,若y的值随x的值的增大而减小,则k的值可能是()A.0 B.2 C.-4 D.-23.下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形4.下面的平面图形中,不能镶嵌平面的图形是()A.正三角形 B.正六边形 C.正四边形 D.正五边形5.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.下列事件中,属于随机事件的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.一组对边平行另一组对边相等的四边形是平行四边形C.矩形的两条对角线相等D.菱形的每一条对角线平分一组对角7.甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同。设甲每天加工服装x件。由题意可得方程()A. B.C. D.8.若在实数范围内有意义,则x的取值范围是()A. B. C. D.x<39.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是()A.对角线互相垂直 B.对角线相等 C.一组对边平行而另一组对边不平行 D.对角线互相平分10.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的()A.众数 B.方差 C.平均数 D.中位数二、填空题(每小题3分,共24分)11.如图,已知∠BAC=60°,∠C=40°,DE垂直平分AC交BC于点D,交AC于点E,则∠BAD的度数是_________.12.已知,则的值为________.13.如图,矩形中,,,将矩形沿折叠,点落在点处.则重叠部分的面积为______.14.如图,某公司准备和一个体车主或一民营出租车公司中的一家签订月租车合同,设汽车每月行驶,个体车主收费为元,民营出租车公司收费为元,观察图像可知,当_________时,选用个体车主较合算.15.如图,在平面直角坐标系中,矩形OABC的边OA在x轴上,边OC在y轴上,点B的坐标为1,3.将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点E的坐标为______.16.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ADP为等腰三角形时,点P的坐标为_______________________________.17.如图,是的斜边上的中线,,在上找一点,使得,连结并延长至,使得,连结,,则长为________.18.直线与平行,且经过(2,1),则+=____________.三、解答题(共66分)19.(10分)如图,在正方形ABCD的外侧,作等边三角形BCE,连接AE,DE.(1)求证:AE=DE(2)过点D作DF⊥AE,垂足为F,若AB=2cm,求DF的长.20.(6分)计算:(1)×.(2).21.(6分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?22.(8分)关于的一元二次方程.(1)方程有实数根,求的范围;(2)求方程两根的倒数和.23.(8分)小强想利用树影测树高,他在某一时刻测得直立的标杆长0.8m,其影长为1m,同时测树影时因树靠近某建筑物,影子不全落在地上,有一部分落在墙上如图,若此时树在地面上的影长为5.5m,在墙上的影长为1.5m,求树高24.(8分)一条笔直跑道上的A,B两处相距500米,甲从A处,乙从B处,两人同时相向匀速而跑,直到乙到达A处时停止,且甲的速度比乙大.甲、乙到A处的距离(米)与跑动时间(秒)的函数关系如图14所示.(1)若点M的坐标(100,0),求乙从B处跑到A处的过程中与的函数解析式;(2)若两人之间的距离不超过200米的时间持续了40秒.①当时,两人相距200米,请在图14中画出P(,0).保留画图痕迹,并写出画图步骤;②请判断起跑后分钟,两人之间的距离能否超过420米,并说明理由.25.(10分)计算:①|-|+|-2|-|-1|②+-+(-1)1.26.(10分)某书店准备购进甲、乙两种图书共100本,购书款不高于1118元,预这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如表所示:甲种图书乙种图书进价(元/本)814售价(元/本)1826请回答下列问题:(1)书店有多少种进书方案?(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(请你用所学的一次函数知识来解决)

参考答案一、选择题(每小题3分,共30分)1、C【解析】

服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.【详解】由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故选(C)【点睛】本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;2、C【解析】

根据正比例函数图象与系数的关系列出关于k的不等式k+2<0,然后解不等式即可.【详解】解:∵正比例函数y=(k+2)x中,y的值随自变量x的值增大而减小,∴k+2<0,解得,k<-2;观察选项,只有选项C符合题意.故选:C.【点睛】本题考查正比例函数图象在坐标平面内的位置与k的关系.注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.3、B【解析】【分析】根据轴对称图形与中心对称图形的概念进行求解即可.【详解】A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角是轴对称图形但不一定是中心对称图形,故本选项错误;D、平行四边形是中心对称图形但不一定是轴对称图形,故本选项错误,故选B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、D【解析】

几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【详解】A、正三角形的每一个内角都是60°,放在同一顶点处6个即能镶嵌平面;B、正六边形每个内角是120°,能整除360°,故能镶嵌平面;C、正四边形的每个内角都是90°,放在同一顶点处4个即能镶嵌平面;D、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌平面,故选D.【点睛】本题考查了平面镶嵌(密铺),用一般凸多边形镶嵌,用任意的同一种三角形或四边形能镶嵌成一个平面图案.因为三角形内角和为180°,用6个同一种三角形就可以在同一顶点镶嵌,而四边形的内角和为360°,用4个同一种四边形就可以在同一顶点处镶嵌.用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.5、C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时图象在一、二、四象限.6、B【解析】

根据平行四边形的判定、矩形的性质、菱形的性质结合随机事件与必然事件的概念逐一进行分析判断即可.【详解】A.一组对边平行且一组对角相等的四边形是平行四边形,正确,是必然事件,故不符合题意;B.一组对边平行另一组对边相等的四边形是平行四边形或等腰梯形,是随机事件,故符合题意;C.矩形的两条对角线相等,正确,是必然事件,故不符合题意;D.菱形的每一条对角线平分一组对角,正确,是必然事件,故不符合题意,故选B.【点睛】本题考查了随机事件与必然事件,涉及了平行四边形的判定、矩形的性质、菱形的性质等,熟练掌握相关的知识是解题的关键.7、C【解析】

根据乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同,列出相应的方程,本题得以解决.【详解】解:由题意可得,,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.8、B【解析】

根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,3-x≥0,

解得,x≤3,

故选:B.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.9、A【解析】分析:根据三角形的中位线定理得到四边形EFGH一定是平行四边形,再推出一个角是直角,由矩形的判定定理可求解.详解:连接AC、BD,两线交于O,

根据三角形的中位线定理得:EF∥AC,EF=AC,GH∥AC,GH=AC,

∴EF∥GH,EF=GH,

∴四边形EFGH一定是平行四边形,

∴EF∥AC,EH∥BD,

∵BD⊥AC,

∴EH⊥EF,

∴∠HEF=90°,

故选:A.点睛:能够根据三角形的中位线定理证明:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等的四边形各边中点所得四边形是菱形.掌握这些结论,以便于运用.10、D【解析】

由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.

故选:D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.二、填空题(每小题3分,共24分)11、20°【解析】

根据垂直平分线的性质可得∠DAC=∠C=40°,又∠BAC=60°,从而可得结论.【详解】∵DE垂直平分AC,∴AD=CD,∴∠DAC=∠C=40°,∵∠BAC=60°,∴∠BAD=∠BAC-∠DAC=60°-40°=20°.故答案为:20°.【点睛】此题考查了线段垂直平分线的性质,熟练掌握垂直平分线的性质是解决此题的关键.12、1.【解析】

只有非负数才有平方根,可知两个被开方数都是非负数,即可求得x的值,进而得到y,从而求解.【详解】解:由题意得解得:x=1,

把x=1代入已知等式得:y=0,

所以,x+y=1.【点睛】函数自变量的范围一般从三个方面考虑:

(1)当函数表达式是整式时,自变量可取全体实数;

(2)当函数表达式是分式时,考虑分式的分母不能为0;

(3)当函数表达式是二次根式时,被开方数为非负数.13、10【解析】

根据翻折的特点得到,.设,则.在中,,即,解出x,再根据三角形的面积进行求解.【详解】∵翻折,∴,,又∵,∴,∴.设,则.在中,,即,解得,∴,∴.【点睛】此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.14、【解析】

选用个体车较合算,即对于相同的x的值,y1对应的函数值较小,依据图象即可判断.【详解】解:根据图象可以得到当x>1500千米时,y1<y2,则选用个体车较合算.故答案为【点睛】此题为一次函数与不等式的简单应用,搞清楚交点意义和图象的相对位置是关键.15、(0,43【解析】

先证明EA=EC(设为x);根据勾股定理列出x2=12+(3-x)2,求得x=53【详解】由题意知:∠BAC=∠DAC,AB∥OC,∴∠ECA=∠BAC,∴∠ECA=∠DAC,∴EA=EC(设为x);由题意得:OA=1,OC=AB=3;由勾股定理得:x2=12+(3-x)2,解得:x=53∴OE=3-53=4∴E点的坐标为(0,43故答案为:(0,43【点睛】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答;对综合的分析问题解决问题的能力提出了较高的要求.16、(2,4),(8,4),(7,4),(7.5,4)【解析】

分PD=DA,AD=PA,DP=PA三种情况讨论,再根据勾股定理求P点坐标【详解】当PD=DA

如图:以D为圆心AD长为半径作圆,与BD交P点,P'点,过P点作PE⊥OA于E点,过P'点作P'F⊥OA于F点,

∵四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),

∴AD=PD=5,PE=P'F=4

∴根据勾股定理得:DE=DF=∴P(2,4),P'(8,4)

若AD=AP=5,同理可得:P(7,4)

若PD=PA,则P在AD的垂直平分线上,

∴P(7.5,4)

故答案为:(2,4),(8,4),(7,4),(7.5,4)【点睛】本题考查了等腰三角形的性质,勾股定理,利用分类思想解决问题是本题的关键.17、1【解析】

根据直角三角形的性质求出DE,根据三角形中位线定理计算即可.【详解】解:∵DE是Rt△ABD的斜边AB上的中线,AB=12,∴DE=AB=6,∴EF=DE-DF=6-2=4,∵AF=CF,AE=EB,∴EF是三角形ABC的中位线,∴BC=2EF=1,故答案为:1.【点睛】本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.18、6【解析】∵直线y=kx+b与y=−5x+1平行,∴k=−5,∵直线y=kx+b过(2,1),∴−10+b=1,解得:b=11.∴k+b=-5+11=6三、解答题(共66分)19、(1)详见解析;(2)【解析】

(1)证明△ABE≌△DCE,可得结论;(2)作辅助线,构建直角三角形,根据等腰三角形的性质得∠BCG=30°,∠DEF=30°,利用正方形的边长计算DE的长,从而得DF的长.【详解】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∠ABC=∠DCB=90°,∵△BCE是等边三角形,∴BE=CE,∠EBC=∠ECB=60°,即∠ABE=∠DCE=150°,∴△ABE≌△DCE,∴AE=DE;(2)解:过点E作EG⊥CD于G,∵DC=CE,∠DCE=150°,∴∠CDE=∠CED=15°,∴∠ECG=30°,∵CB=CD=AB=2,∴EG=1,CG=,在Rt△DGE中,DE=,在Rt△DEF中,∠EDA=∠DAE=90°﹣15°=75°∴∠DEF=30°,∴DF=DE=(cm).【点睛】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定和性质、等腰三角形的判定和性质,题目的综合性很好,难度不大.20、(1);(1)-1.【解析】

(1)直接利用二次根式的乘法法则,进行化简,得出答案;(1)先化简二次根式,进而计算得出答案.【详解】(1)原式=×=;(1)原式=(1﹣4)÷=﹣1.【点睛】本题主要考查二次根式的性质和运算法则,掌握二次根式的性质和运算法则是解题的关键.21、甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.【解析】【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,根据题意得,,解得,经检验,是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲乙两种商品的销售量为,设甲种商品按原销售单价销售a件,则,解得,答:甲种商品按原销售单价至少销售20件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.22、(1)且,见解析;(2),见解析.【解析】

(1)由一元二次方程有实数根,根据根的判别式,即可求得答案;(2)由根与系数的关系即可求解.【详解】解:(1)由题意得:,∴,解得:且,∴的取值范围是且;(2)设方程的两根为,,由根与系数的关系得:,,∴.【点睛】此题考查了根的判别式以及根与系数的关系.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=,x1•x2=.23、解:设从墙上的影子的顶端到树的顶端的垂直高度是x米.则有0.8/1=x/5.5解得x=1.1.∴树高是1.1+1.5=5.9(米),【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.本题中:经过树在教学楼上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上墙上的影高就是树高.24、(1);(2)①见解析;②起跑后分钟,两人之间的距离不能超过米,理由见解析.【解析】

(1)设乙从B处跑到A处的过程中y与x的函数关系式为y=kx+b,把(0,10)和(100,0)代入求出k,b的值即可,(2)①设,两直线相交于点.过点作轴的垂线,交直线于点,在射线上截取,使过点作轴的垂线,则垂足即为所求点.②由两人有相距200到相遇用时1秒,由a>b,,起跑后分钟(即秒),两人处于相遇过后,但乙未到达处,则计算乙在90秒内离开B距离比较即可.【详解】(1)设把分别代入,可求得∴解析式为(2)如图:设,两直线相交于点.步骤为:.①过点作轴的垂线,交直线于点②在射线上截取,使③过点作轴的垂线,则垂足即为所求点.(3)起跑后分钟,两人之间的距离不能超过米.理由如下:由题可设∵两人之间的距离不超过米的时间持续了秒,∴可设当或时,两人相距为米.∴相遇前,当时,,即也即①.相遇后,当时,即也即②.把①代入②,可得解得当两人相遇时,,即即,解得x=1.∵甲的速度比乙大,所以,可得∴起跑后分钟(即秒),两人处于相遇过后,但乙未到达处.∴两人相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论